BECKHOFF

TF6310

TwinCAT 3 | TCP/IP

Fle Edt View projeq Buld Debug
.o H N
Build 40244 (Loaded) . r‘;‘@" o
4821 @
Solution Explorer . '

p New Project -
®DE-| B

TwinCAT s
- a- TWinSAFE PLC Tegmn Scope Tools

~ | TwinCATRT (x64)
98 | TuinCAT Project

Vindow Help

P Attach.. v

b Recent

ch Solution Exp

y: | Default
. . 4 Installed
%] Solution ‘TwinCAT Project’ (1 project) et
4 /| TWinCAT Project
4 (@] SvSTEM
¥ License

P Controtes E'.J TwinCAT XAE Project (XML format)
b TwinCAT Measurement
TwinCAT CAD Interface Beta Version

D Real-Time TwinCAT Projects

B Tasks TwinCAT PLC

52 Routes

23 Type System

] TcCOM Objects
[moTIoN
g ric

SAFETY

C++
& AnaLTICS

o
» G0 Not finding what youae loaking o’

TeXaeShell Solution

(Open Visual Studio Installer -
TwinCAT Project
= forsolution
l et e

3 [trol
3] AddtoSource Con

i Create new solution .

ution:
g TwinCAT Project
=

Solution nam

2023-03-08 | Version: 1.4.3

BEGKHOFF Table of contents

Table of contents

I e =11 o Y P 5
1.1 Notes on the doCUMENTALION ... e e e e e 5
1.2 SafEtY INSITUCHIONS ...ttt e e e e e e e e e e eeeaaeeeeesesannsanrnneeaeaeens 6
1.3 Notes on infOrmation SECUNITYcooi i 7

7 © 1Y =Y T 8
2.1 Comparison TFB3T0 TEB3TT ...ttt et e e et e e e e bt e e e e e anbeeeeeens 8

B 14 =3 = 1] = oY 9
3.1 SYSIEM FEQUIMEIMENES ...ttt e et e e e e bt e e e e aa bt e e e e ante e e e e e anbeneeeeaas 9
R T [15 =11 =1 (o o PO PPERRTR 9
3.3 Installation WINAOWS CEoooiiiiiii ittt e e e e e e e e e e e e st ereeeeeeeaeeas 12
N N To = o 11 o T [PPSO PRP PP 14
3.5 Migration from TWINCAT 2 ...t e e e e e e e e e e e e e e e e e s aareeeaaaeeas 16

4 Technical iINtrodUCHION........coo e s s e e s mnmmnn s 18

LT o O - 20
5.1 FUNCHON DIOCKS ...ttt e e e e e e e e ettt et e e e e e e e e e e aannneeneeeeeaaaaens 20

511 FB_SOCKEICONNECE ...t e e e e e e e r e e e e e e e 20
51.2 FB_SOCKEICIOSE ..ottt et et e e 21
51.3 FB_SOCKEICIOSEAILo a e 22
51.4 FB_ SOCKETLISIEN ..t e e e e e e e e aaaae s 23
51.5 S TS oo (] /oo~ o) SRR 24
5.1.6 FB_SOCKEISENM ...t 25
51.7 FB_SOCKEIRECEIVE.t 27
51.8 [S TS ToTed (o] LU o | o107 Y- | (= SRR 28
51.9 FB_SOCKEIUAPSENATO ...eiiiiiiiiiie ettt ettt e e e 29
5.1.10 FB_SocketUdpRECEIVEFTOM......ccoiiiiiiiiiiie e 31
5.1.11 FB_SocketUdpAddMUltiCastAddressccooiiiiiiiiiieeeeeeeee e 33
5.1.12 FB_SocketUdpDropMultiCastAdAreSS.......cccuuviiiiiiiiiee e 34
5113 FB_TISSOCKEICONNECT e e e e e e e e e e e e ns 35
5114 FB_TISSOCKEILISIEN ... a e 37
5115 FB_TISSOCKEICIEALEeeiiiiiiiiie ettt e e e e 38
5.1.16 FB_TISSOCKEIAAACA......coiiiiiiiiie ettt ettt e et e e e e e e e e e nreeaeeeennees 40
5117 FB_TISSOCKEIAAACIeeiiiiiiiiiiee ettt ettt e e e e e e et e e e e e 41
5118 FB_TISSOCKEISEICEIT.ceiiiiiiiiie et 42
5119 FB_TISSOCKEISEIPSK ...coeeeeiiiicee et e e e e e aaaaaans 43
Lo T 2 T o 1= o= PP PUPUPRTN 44
LS U o 1 o] o T SO 50
5.21 F CreateServerHNd ... 50
5.2.2 HSOCKET_TO_STRING ...ttt ettt e e et e e e ntee e e e nnees 52
523 HSOCKET _TO_STRINGEX ...oiiiiiiiiiiie ettt e e enee e e e s sntan e e e e e ntena e e e nnnees 52
524 SOCKETADDR _TO_STRING......coiiiiiiiiiiie ettt e see e ee e anneee e e s enneeee s 53
TR B B -1 - 1 7/ o= PSPPSR 54
5.31 E_SOCKEtACCEPIMOAE e e e e 54
5.3.2 E_SocketConneCHONSTAtEuuviiiiiiieei e 54

TF6310

Version: 1.4.3 3

Table of contents BEGKHOFF

5.3.3 E_SocketConnectionIesSSSTate..........cccoiiiiiiiiiieeieee e 55

534 E_WINSOCKEITON ...t e e 55

5.3.5 S RS o T3 N o [ST 57

5.3.6 ST _TISCONNECIFIAGS. . .uteiiiiiie et e e e e e e e e e e naee s 57

5.3.7 ST _TISLISTENFIAUS ...eeeeeeeiee ettt e e 58

5.3.8 T HSERVER. ...ttt ettt e e e e et e e e et e e e e e e e e e e nteeeeeeannees 58

5.3.9 T HS O CKET ... ettt ettt e e e e e e et e e e e et e e e e e a b e e e e e e ab e e e e e eabaeeeeeannaes 59

L €1 1] o T= | I e g < - o1 <SOSR 60
5.4.1 GIODAI VAADIES ...ttt s as 60

54.2 [o] =T VA=Y 1o o PSPPSR 61

543 Parameter lISt....... .. e a e 62

LTS - 5 T o [63
& 0t O PSSP 63
6.1.1 Sample01: "Echo" client/server (base bIOCKS)ueeeiiiiiiiiiiiiiiiiieee e, 63

6.1.2 Sample02: “ECho” ClIENT /SEIVET 82

6.1.3 Sample03: “EChO” ClIENT/SEIVETuuveeiiiieee e 83

6.1.4 Sample04: Binary data €XChangeeeiiiiiiiiiii e 85

6.1.5 Sample05: Binary data eXChangeooiiiiiiiiiiii e 87

6.1.6 Sample06: "Echo" client/server with TLS (basic modules)ccccovveeeeeiieiiiiiiiiiiiiieee. 89

6.1.7 Sample07: "Echo" client/server with TLS-PSK (basic modules)..........ccccccoviiiiiieniiiinnnnn. 89

LT U | SO 90
6.2.1 Sample01: Peer-to-peer CommuniCatioN...........ccccuuiiiiiiiiiie e a0

6.2.2 SaMPIE02: MUIICAST ..ottt 98

A 5 . o 1= Lo [N 99
S B © 1 11T To [RSSO PRSPPI 99
7.2 KeepAIlIVE CONFIGUIATIONooiiiiiiiii ettt e e ettt e e e st e e e s s s e e e e s nnnereeeesannneeeas 99
4 T =4 (o oo Yo [SO 100
7.31 Overview Of the rror COUES ...t e e e e e e e e 100

7.3.2 Internal error codes of the TwWinCAT TCP/IP Connection Server...........ccccceeevvivieeeeennnns 101

7.3.3 Troubleshooting/diagNOSHICSueiiiiiiii e 103

7.3.4 ADS RELUIMN COAES. ...ttt ettt e e e e e e e e e e eeeeeaaaeeeas 103

A S U o] oTo] o aF=Ta o IS T=Y oV o7 TSROSO PPPRT 107

Version: 1.4.3 TF6310

BEGKHOFF Foreword

1 Foreword

1.1 Notes on the documentation

This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with applicable national standards.

It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning the components.

It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly under
development.

We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, TwinCAT/BSD®, TC/BSD®, EtherCAT®, EtherCAT G®, EtherCAT G10°, EtherCAT P,
Safety over EtherCAT®, TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by
Beckhoff Automation GmbH.

Other designations used in this publication may be trademarks whose use by third parties for their own
purposes could violate the rights of the owners.

Patent Pending

The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents:

EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702

with corresponding applications or registrations in various other countries.

—
EtherCAT.

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.

The reproduction, distribution and utilization of this document as well as the communication of its contents to
others without express authorization are prohibited.

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a
patent, utility model or design.

TF6310 Version: 1.4.3 5

Foreword BECKHOFF

1.2 Safety instructions

Safety regulations

Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.

Exclusion of liability

All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.
Personnel qualification

This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.

Description of symbols

In this documentation the following symbols are used with an accompanying safety instruction or note. The
safety instructions must be read carefully and followed without fail!

A DANGER

Serious risk of injury!

Failure to follow the safety instructions associated with this symbol directly endangers the life and health of
persons.

Risk of injury!

Failure to follow the safety instructions associated with this symbol endangers the life and health of
persons.

A CAUTION

Personal injuries!
Failure to follow the safety instructions associated with this symbol can lead to injuries to persons.

NOTE

Damage to the environment or devices

Failure to follow the instructions associated with this symbol can lead to damage to the environment or
equipment.

® Tip or pointer
1 This symbol indicates information that contributes to better understanding.

Version: 1.4.3 TF6310

(e}

BEGKHOFF Foreword

1.3 Notes on information security

The products of Beckhoff Automation GmbH & Co. KG (Beckhoff), insofar as they can be accessed online,
are equipped with security functions that support the secure operation of plants, systems, machines and
networks. Despite the security functions, the creation, implementation and constant updating of a holistic
security concept for the operation are necessary to protect the respective plant, system, machine and
networks against cyber threats. The products sold by Beckhoff are only part of the overall security concept.
The customer is responsible for preventing unauthorized access by third parties to its equipment, systems,
machines and networks. The latter should be connected to the corporate network or the Internet only if
appropriate protective measures have been set up.

In addition, the recommendations from Beckhoff regarding appropriate protective measures should be
observed. Further information regarding information security and industrial security can be found in our

https://www.beckhoff.com/secquide.

Beckhoff products and solutions undergo continuous further development. This also applies to security
functions. In light of this continuous further development, Beckhoff expressly recommends that the products
are kept up to date at all times and that updates are installed for the products once they have been made
available. Using outdated or unsupported product versions can increase the risk of cyber threats.

To stay informed about information security for Beckhoff products, subscribe to the RSS feed at https://
www.beckhoff.com/secinfo.

TF6310 Version: 1.4.3 7

https://www.beckhoff.com/secguide
https://www.beckhoff.com/secinfo
https://www.beckhoff.com/secinfo

Overview

BECKHOFF

2 Overview

The TwinCAT TCP/IP Connection Server enables the implementation of one or several TCP/IP servers/
clients in the TwinCAT PLC. This gives a PLC programmer the possibility to develop own network protocols
of the application layer (OSI model) directly in a PLC program. The communication connection can optionally

be secured via TLS.

Product components

The product TF6310 TCP/IP consists of the following components, which will be delivered by the setup:

« PLC library: Tc2_Tcplp library (implements basic TCP/IP and UDP/IP functionalities).
» Background program: TwinCAT TCP/IP Connection Server (process which is used for

communication).

2.1

Comparison TF6310 TF6311

The products TF6310 "TCP/IP" and TF6311 "TCP/UDP Realtime" offer similar functionality.

This page provides an overview of similarities and differences of the products:

TF 6310 TF 6311
TwinCAT TwinCAT 2/3 TwinCAT 3
Client/Server Both Both
Large / unknown networks ++ +
Determinism + ++
High-volume data transfer ++ +
Programming languages PLC PLC and C++
Operating system Win32/64, CE5/6/7 Win32/64, CE7
UDP-Mutlicast Yes No
Trial license Yes Yes
Protocols TCP, UDP TCP, UDP, Arp/Ping
Hardware requirements Variable TwinCAT-compatible network card

Socket configuration

See operating system (WinSock)

TCP/UDP RT TcCom Parameters

The Windows firewall cannot be used, since the TF6311 is directly integrated in the TwinCAT system. In
larger / unknown networks we recommend using the TF6310.

Version: 1.4.3

TF6310

BEGKHOFF Installation

3 Installation

3.1 System requirements

The following system requirements must be met for the function TF6310 TCP/IP to work properly.

Technical data Description

Operating system Windows 7, 10

Windows CE 6/7

Windows Embedded Standard 2009
Windows Embedded 7

TwinCAT/BSD
Target platforms PC architecture (x86, x64, ARM)
TwinCAT Version TwinCAT2, TwinCAT3
TwinCAT installation level TwinCAT2 CP, PLC, NC-PTP
TwinCAT3 XAE, XAR, ADS
Required TwinCAT license TS6310 (for TWinCAT2)

TF6310 (for TWinCAT3)

® Support of TLS
1 Please note that the TLS function blocks are not available under Windows CE.

3.2 Installation

The following section describes how to install the TwinCAT 3 Function for Windows-based operating
systems.

v' The TwinCAT 3 Function setup file was downloaded from the Beckhoff website.

1. Run the setup file as administrator. To do this, select the command Run as administrator in the context
menu of the file.

= The installation dialog opens.

TF6310 Version: 1.4.3 9

Installation BECKHOFF

2. Accept the end user licensing agreement and click Next.

License Agreement

Flease read the following license agreement carefully.

Software Usage Agreement for Beckhoff Software Products

[»

& 1 Subject Matter of thiz Agreement

(1) Licen=or grants Licenzee a non-tranzsferable, non-exclusive right to use the data
processing applications specified in Appendix 1 hereto (herginafter called "Software™) under
the conditions specified hereinafter.

(2} The Software ghall be delivered to Licensee on machine-readable recording media as
specified in Appendix 1, on which it iz recorded as an object program in an executable status.
One copy of the user documentation shall be part of the application and it shall be delivered to
Licensee in printed form, or also on a machine-readable recording medium or online. The form
the user documentation is delivered in iz specified in Appendix 1. The Software and the
documentation are hereinafter called "License Materials™. 57

@ I accept the terms in the license agreement

(71 I do not accept the terms in the license agreement

InstallShield

<Back || MNext> || cancel |

3. Enter your user data.

Customer Information

Please enter your information.

User Mame:

IMax Mustermann

Qrganization:

I ustermann Inc.

InstallShield

<Back || MNext> || cancel

10 Version: 1.4.3 TF6310

BECKHOFF

Installation

4. If you want to install the full version of the TwinCAT 3 Function, select Complete as installation type. If

you want to install the TwinCAT 3 Function components separately, select Custom.

Setup Type

Choose the setup type that best suits your needs,

InstallShield

Please select a setup type.

@ Complete

All program features will be installed to all installed TwinCAT 3
versions on your system. (Requires the most disk space.)

TwinCAT 3 version they will be installed. Recommended for

ﬂ Choose which program features you want installed and to which

advanced users,

< Back]I Mext =

I [Cancel

5. Select Next, then Install to start the installation.

Ready to Install the Program
The wizard is ready to beqin installation.

InstallShield

Click Install to begin the installation.

If you want to review or change any of your installation settings, dick Back. Click Cancel to

exit the wizard.

< Back “

Install

] [Cancel

= A dialog box informs you that the TwinCAT system must be stopped to proceed with the installation.

TF6310

Version: 1.4.3

11

Installation

BECKHOFF

6. Confirm the dialog with Yes.

e

o

TwinCAT Server Installation 3

TwinCAT systern has to be stopped before proceeding with installation,
Should TwinCAT be stopped?

ey [

7. Select Finish to exit the setup.

Beckhoff Setup Completed

. The Beckhoff Setup has successfully installed TF 33
Click Finish to exit the wizard.

[T] show the Windows Installer log

| < Back |l Finish I | Cancel

= The TwinCAT 3 Function has been successfully installed and can be licensed (see Licensing [P_14]).

3.3 Installation Windows CE

This section describes, how you can install the TwinCAT 3 Function TF6310 TCP/IP on a Beckhoff

Embedded PC Controller based on Windows CE.
The setup process consists of four steps:

» Download of the setup file [» 13]

 |nstallation on a host computer [» 13]

 Transferring the executable to the Windows CE device [P 13]
» Software installation [P_13]

The last paragraph of this section describes the Software upgrade [»_14].

12 Version: 1.4.3

TF6310

BEGKHOFF Installation

Download of the setup file

The CAB installation files for Windows CE are part of the TF6310 TCP/IP setup. Therefore you only need to

download one setup file from www.beckhoff.com which contains binaries for Windows XP, Windows 7 and
Windows CE (x86 and ARM).

The installation procedure of the TF6310 TCP/IP setup is described in the regular installation article (see
Installation [» 9]).

Installation on a host computer

After installation, the install folder contains three directories - each one for a different hardware platform:
+ CE-ARM: ARM-based Embedded Controllers running Windows CE, e.g. CX8090, CX9020
» CE-X86: X86-based Embedded Controllers running Windows CE, e.g. CX50xx. CX20x0
* Win32: Embedded Controllers running Windows XP, Windows 7 or Windows Embedded Standard

Share with - Burn Mew folder

Organize «

Include in library «

-

MName Date modified Type Size
. CE-ARM 26.03.2013 08:55 File folder
. CE-X86 26.03.2013 08:35 File folder

L Win32 21.02.201313:31 File folder

The CE-ARM and CE-X86 folders contain the TF6310 CAB files for Windows CE corresponding to the
hardware platform of your Windows CE device. This file needs to be transferred to the Windows CE device.
Transferring the executable to the Windows CE device

Transfer the corresponding executable to you Windows CE device. This can be done via one of the following
ways:

 via a Shared Folder

* via the integrated FTP-Server
 via ActiveSync

 via a CF card

For more information, please consult the "Windows CE" section in the Beckhoff Information System.

Software installation

After the file has been transferred via one of the above methods, execute the file and acknowledge the
following dialog with Ok. Restart your Windows CE device after the installation has finished.

After the restart has been completed, the executable files of TF6310 are started automatically in the
background.

The software is installed in the following directory on the CE device:

\Hard Disk\TwinCAT\Functions\TF6310-TCP-IP

TF6310 Version: 1.4.3 13

http://www.beckhoff.com

Installation BEGKHOFF

Upgrade instructions
If you have already a version of TF6310 installed on your Windows CE device, you need to perform the
following things on the Windows CE device to upgrade to a newer version:
1. Open the CE Explorer by clicking on Start > Run and entering "explorer".
. Navigate to \Hard Disk\TwinCAT\Functions\TF6310-TCP-IP\Server.
. Rename TcplpServer.exe to TeplpServer.old.
. Restart the Windows CE device.
. Transfer the new CAB-File to the CE device.
. Execute the CAB-File and install the new version.
. Delete TcplpServer.old.
. Restart the Windows CE device.
= After the restart is complete, the new version is active.

0 N O 0ok~ WDN

3.4 Licensing

The TwinCAT 3 function can be activated as a full version or as a 7-day test version. Both license types can
be activated via the TwinCAT 3 development environment (XAE).
Licensing the full version of a TwinCAT 3 Function

A description of the procedure to license a full version can be found in the Beckhoff Information System in
the documentation "TwinCAT 3 Licensing".

Licensing the 7-day test version of a TwinCAT 3 Function

o
1 A 7-day test version cannot be enabled for a TwinCAT 3 license dongle.

1. Start the TwinCAT 3 development environment (XAE).
2. Open an existing TwinCAT 3 project or create a new project.

3. If you want to activate the license for a remote device, set the desired target system. To do this, select
the target system from the Choose Target System drop-down list in the toolbar.

= The licensing settings always refer to the selected target system. When the project is activated on
the target system, the corresponding TwinCAT 3 licenses are automatically copied to this system.

4. In the Solution Explorer, double-click License in the SYSTEM subtree.

Solution Explorer v 0 x
@l o-a|s =
Search Solution Explorer (Ctrl+) P

.T_I Solution TwinCAT SampleProject’ (1 project)
4 Hﬂ TwinCAT SampleProject
4 () SYSTEM
¥ License
b @) Real-Time
b B Tasks
gf= Routes
215 Type System
|88 TcCOM Objects

= The TwinCAT 3 license manager opens.

14 Version: 1.4.3 TF6310

https://infosys.beckhoff.com/content/1033/tc3_licensing/117093592658046731.html?id=5546616718344501207
https://infosys.beckhoff.com/content/1033/tc3_licensing/3511048971.html

BEGKHOFF Installation

5. Open the Manage Licenses tab. In the Add License column, check the check box for the license you
want to add to your project (e.g. "TF4100 TC3 Controller Toolbox").

Order Information (Rurtime) Manage Licenses Project Licenses Online Licenses

] Disable automatic detection of required licenses for project

Order Mo License "Add License

TF3601 TC3 Condition Menitoring Level 2 | cpulicense
TF3650 TC3 Power Monitoring | cpulicense
TF3680 TC3 Filter | cpulicense
TF3200 TC3 Machine Learning Inference Engine [cpu license
TF3210 TC3 Meural Metwork Inference Engine [cpu license
TF3500 TC3 Selar-Position-Algorithm | cpulicense
TF4100 TC3 Controller Toolbox cpu license
TR0 TC3 Temperature-Controller [cpu license
TR4500 TC3 Speech [cpu license

6. Open the Order Information (Runtime) tab.
= In the tabular overview of licenses, the previously selected license is displayed with the status
“missing”.
7. Click 7-Day Trial License... to activate the 7-day trial license.

Order Information (Rurtime) Manage Licenses Project Licenses Online Licenses

License Device Target (Hardware Id) o Add...
System Id: Platfom:
20B25408-B4CD-81DF-52483-6A3D9B43EF19 | other (31)

License Request

Provider: Beckhoff Automation - Generate File...
License Id: | Customer Id: |
Comment: | |
License Activation

7 Days Tral License... I License Response File...

= A dialog box opens, prompting you to enter the security code displayed in the dialog.

Enter Security Code >

Fleaze type the following 5 characters: k.

| Ke8T4 |

8. Enter the code exactly as it is displayed and confirm the entry.
9. Confirm the subsequent dialog, which indicates the successful activation.

= In the tabular overview of licenses, the license status now indicates the expiry date of the license.

TF6310 Version: 1.4.3 15

Installation BEGKHOFF

10. Restart the TwWinCAT system.
= The 7-day trial version is enabled.

3.5 Migration from TwinCAT 2

If you would like to migrate an existing TwinCAT 2 PLC project which uses one of the TCP/IP Server's PLC
libraries, you need to perform some manual steps to ensure that the TwinCAT 3 PLC converter can process
the TwinCAT 2 project file (*.pro). In TwinCAT 2, the Function TCP/IP Server is delivered with three PLC
libraries:

* Tcplp.lib
» TcSocketHelper.lib
e TcSnmp.lib
By default, these library files are installed in C:\TwinCAT\PIc\Lib\. Depending on the library used in your PLC

project, you need to copy the corresponding library file to C:\TwinCAT3\Components\Plc\Converter\Lib and
then perform the following steps:

1. Open the TwinCAT Engineering.
2. Create a new TwinCAT 3 solution.
3. Right-click on the "PLC" node and select Add Existing Item in the context menu that opens.

Solution Explorer

Q Solution TwinCAT Project22' (1 project)
4[5 TwinCAT Project22
> |l SYSTEM
MOTION
PLC

Add Mew Itern... Ctrl+5Shift+4 SAFETY
Add Existing Item... Shift+Alt+A C++
o

Add Project from Source Control...

4 Paste Ctrl+V
Paste with Links

% Import PLCopenXML...

16 Version: 1.4.3 TF6310

BECKHOFF

Installation

4. In the Open dialog, select the file type "Plc 2.x Project Import (*.pro)", browse to the folder containing
your TwinCAT 2 PLC project and select the corresponding.pro file and click Open.

-

od Open

Gu

>| . » Sven Goldstein » Desktop » Temp » TCP » [4] \ Search TCP o

Organize » Mew folder = ~ i @
4% Favorites i MName Date modified Type
i Desktop M MNET 29.06.2012 11:07 File folder
. Software || Teplp_ CLIENT.pro 19.03.2012 13:52 PRO File
. Public || Teplp_SERVER.pro 19.03.2012 13:52 PRO File

i

i

1. Workspace
. Workspace - Infosys
1. Workspace - TFS

= Books

@ Images

M NAS-SERVER

| 43 SharePoint Sites

&% SkyDrive

74|

| 3

File name: Tcplp_SERVER.pro

’Plc 2. Project Import (*.proj vl

I Open I l Cancel]

= TwinCAT 3 starts the converter process and finally displays the converted PLC project under the “PLC*

node.
7 TwinCAT PLC Control | = |
Compiling ...
Interfaces
Solution Explorer * 1 x
3
IQ Solution 'TwinCAT Project22' (1 project)
4 o] TwinCAT Project22
b Gl SYSTEM
MOTION
4 PLC
4 Teplp_SERVER
» [=] Teplp_SERVER Project
[&8] Tcplp_SERVER Instance
T SAFETY
E C++
I o
TF6310 Version: 1.4.3 17

Technical introduction BEGKHOFF

4 Technical introduction

This section will give a general overview about the transport protocols TCP and UDP and will also link to the
corresponding PLC libraries needed to implement each protocol. Both transport protocols are part of the
Internet Protocol suite and therefore an important part of our everyday communication, e.g. the Internet.

Transmission Control Protocol (TCP)

TCP is a connection-oriented transport protocol (OSlI layer 4) that can be compared to a telephone
connection, where participants have to establish the connection first before data can be transmitted. TCP
provides a reliable and ordered delivery of a stream of bytes, therefore it is considered to be a “stream-
oriented transport protocol”. The TCP protocol is used for network applications where a receive confirmation
is required for the data sent by a client or server. The TCP protocol is well suited for sending larger data
quantities and transports a data stream without a defined start and end. For the transmitter this is not a
problem since he knows how many data bytes are transmitted. However, the receiver is unable to detect
where a message ends within the data stream and where the next data stream starts. A read call on the
receiver side only supplies the data currently in the receive buffer (this may be less or more than the data
block sent by the other device). Therefore the transmitter has to specify a message structure that is known to
the receiver and can be interpreted. In simple cases the message structure may consist of the data and a
final control character (e.g. carriage return). The final control character indicates the end of a message. A
possible message structure which is indeed often used for transferring binary data with a variable length
could be defined as follows: The first data bytes contain a special control character (a so-called start
delimiter) and the data length of the subsequent data. This enables the receiver to detect the start and end of
the message.

TCP/IP client
A minimum TCP/IP client implementation within the PLC requires the following function blocks:

« Aninstance of the FB_SocketConnect [P 20] and FB _SocketClose [P 21] function blocks for
establishing and closing the connection to the remote server (Hint: FB_ClientServerConnection [P 44]
encapsulates the functionality of both function blocks)

* Aninstance of the FB SocketSend [P 25] and/or FB SocketReceive [P 27] function block for the data
exchange with the remote server

TCP/IP server

A minimum TCP/IP server implementation within the PLC requires the following function blocks:
* An instance of the FB SocketListen [P 23] function block for opening the listener socket.

* An instance of the FB_SocketAccept [P 24] and FB SocketClose [P 21] function blocks for establishing
and closing the connection(s) to the remote clients (Hint: FB_ServerClientConnection [» 46]
encapsulates the functionality of all three function block)

* Aninstance of the FB_SocketSend [P 25] and/or FB_SocketReceive [» 27] function block for the data
exchange with the remote clients

* An instance of the FB_SocketCloseAll [»_22] function block is required in each PLC runtime system, in
which a socket is opened.

The instances of the FB SocketAccept [P 24] and FB _SocketReceive [»_27] function blocks are called
cyclically (polling), all others are called as required.

User Datagram Protocol (UDP)

UDP is a connection-less protocol, which means that data is sent between network devices without an
explicit connection. UDP uses a simple transmission model without implicitly defining workflows for
handshaking, reliability, data ordering or congestion control. However, even as this implies that UDP
datagrams may arrive out of order, appear duplicated, or congest the wire, UDP is in some cases preffered
to TCP, especially in realtime communication because all mentioned features (which are implemented in

18 Version: 1.4.3 TF6310

BEGKHOFF Technical introduction

TCP) require processing power and therefore time. Because of its connection-less nature, the UDP protocol
is well suited for sending small data quantities. UDP is a “packet-oriented/message-oriented transport
protocol”, i.e. the sent data block is received on the receiver side as a complete data block.

The following function blocks are required for a minimum UDP client/server implementation:

* An instance of the FB_SocketUdpCreate [P 28] and FB SocketClose [P 21] function blocks for opening

and closing an UDP socket (Hint: FB_ConnectionlessSocket [» 49] encapsulates the functionality of
both function)

* Aninstance of the FB SocketUdpSendTo [» 29] and/or FB_SocketUdpReceiveFrom [» 31] function
blocks for the data exchange with other devices;

* An instance of the FB SocketCloseAll [P_22] function block in each PLC runtime system, in which a
UDP socket is opened

The instances of the FB_SocketUdpReceiveFrom [»_31] function block are called cyclically (polling), all others
are called as required.

See also: Samples [P 63]

TF6310 Version: 1.4.3 19

PLC API

BECKHOFF

5

PLC API

5.1 Function blocks

5.1.1 FB_SocketConnect
FB_SocketConnect

—s5rvMetld bBusyF—

— sRemoteHost bErrarf—

—nRemotePart nErrld f—

— bExecute hSocketp—

—tTimeout

Using the function block FB_SocketConnect, a local client can establish a new TCP/IP connection to a
remote server via the TwinCAT TCP/IP Connection Server. If successful, a new socket is opened, and the
associated connection handle is returned at the hSocket output. The connection handle is required by the

function blocks FB SocketSend [P 25] and FB_SocketReceive [P 27], for example, in order to exchange data

with a remote server. If a connection is no longer required, it can be closed with the function block
FB SocketClose [P 21]. Several clients can establish a connection with the remote server at the same time.

For each new client, a new socket is opened and a new connection handle is returned. The TwinCAT TCP/
IP Connection Server automatically assigns a new IP port number for each client.

* Inputs
VAR _INPUT
sSrvNetId : T _AmsNetId := ;
sRemoteHost : T IPv4Addr := 2
nRemotePort : UDINT;
bExecute : BOOL;
tTimeout : TIME := T#45s; (*!!!¥%)
END VAR
Name Type Description
sSrvNetld T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string
may be specified.
sRemoteHost T_IPv4Addr IP address (Ipv4) of the remote server in the form of a string (e.g.
'"172.33.5.1"). An empty string can be entered on the local computer for
a server.
nRemotePort UDINT IP port number of the remote server (e.g. 200).
bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.

® Setting the maximum execution time of the function block

1

Do not set the value "tTimeout" too low, as timeout periods of > 30 s can occur in case of a network
interruption. If the value is too low, command execution would be interrupted prematurely, and ADS

error code 1861 (timeout elapsed) would be returned instead of the Winsocket error
WSAETIMEDOUT.

L Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hSocket : T HSOCKET;
END VAR
20 Version: 1.4.3 TF6310

BECKHOFF PLC API

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active
until acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this
output is set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_100].

hSocket T_HSOCKET | TCP/IP connection handle [} 59] to the newly opened local client
socket.

Requirements

Development environment

Target system type

PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0

PC, or CX (x86, X64, ARM)

Tc2_Tcplp (communication)

5.1.2 FB_SocketClose
FB_SocketClose

—s5rviNetld bBusyft—

— hSocket bErrorf—

— bExecute nErrid f—

—tTimeout

The function block FB_SocketClose can be used to close an open TCP/IP or UDP socket.

TCPI/IP: The listener socket is opened with the function block FB SocketListen [P 23], a local client socket
with FB SocketConnect [» 20] and a remote client socket with FB SocketAccept [» 24].

UDP: The UDP socket is opened with the function block FB SocketUdpCreate [» 28].

* Inputs
VAR INPUT
sSrvNetId : T AmsNetId := '';
hSocket : T HSOCKET;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR
Name Type Description
sSrvNetld | T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string may
be specified.
hSocket T_HSOCKET |« TCP/IP: Connection handle [» 59] of the listener, remote or local client
socket to be closed.
» UDP: Connection handle of the UDP socket.
bExecute |BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
L Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR

TF6310

Version: 1.4.3

21

PLC AP BECKHOFF

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_100].

Requirements
Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)
51.3 FB_SocketCloseAll
FB_SocketCloseAll
—s5rviNetld bBusyft—
—bBxecute bErrorf—
—tTimeout nErrld f—

If TwinCAT is restarted or stopped, the TwinCAT TCP/IP Connection Server is also stopped. Any open
sockets (TCP/IP and UDP connection handles) are closed automatically. The PLC program is reset after a
"PLC reset", a "Rebuild all..." or a new "Download", and the information about already opened sockets
(connection handles) is no longer available in the PLC. Any open connections can then no longer be closed

properly.

The function block FB_SocketCloseAll can be used to close all connection handles (TCP/IP and UDP
sockets) that were opened by a PLC runtime system. This means that, if FB_SocketCloseAll is called in one
of the tasks of the first runtime systems (port 801), all sockets that were opened in the first runtime system
are closed. In each PLC runtime system that uses the socket function blocks, an instance of
FB_SocketCloseAll should be called during the PLC start.

* Inputs

VAR INPUT
sSrvNetId : T AmsNetId := '';
bExecute : BOOL;
tTimeout : TIME := T#5s;

END VAR

Name Type Description

sSrvNetld |T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string may

be specified.
bExecute | BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.

L Outputs

VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;

END VAR

22 Version: 1.4.3 TF6310

BECKHOFF PLC API

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_100].

Example of an implementation in ST

The following program code is used to properly close the connection handles (sockets) that were open
before a "PLC reset" or "Download" before a PLC restart.

PROGRAM MAIN

VAR
fbSocketCloseAll : FB SocketCloseAll;
bCloseAll : BOOL := TRUE;
END VAR
IF bCloseAll THEN(*On PLC reset or program download close all old connections *)
bCloseAll := FALSE;
fbSocketCloseAll (sSrvNetId:= '', bExecute:= TRUE, tTimeout:= T#10s);
ELSE
fbSocketCloseAll (bExecute:= FALSE);
END IF

IF NOT fbSocketCloseAll.bBusy THEN
(*...
. continue program execution...
LLF)
END IF

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Teplp (communication)
51.4 FB_SocketListen
FB_SocketListen
—s5rvNetld bBusy—
—sLocalHost bErrorg—
—nLocalPort nErrld f—
—bBxecute hListenerf—
—tTimeout

Using the function block FB_SocketListen, a new listener socket can be opened via the TwinCAT TCP/

IP Connection Server. Via a listener socket, the TwinCAT TCP/IP Connection Server can 'listen' for incoming
connection requests from remote clients. If successful, the associated connection handle is returned at the
hListner output. This handle is required by the function block FB SocketAccept [P 24]. If a listener socket is
no longer required, it can be closed with the function block FB SocketClose [»_21]. The listener sockets on an
individual computer must have unique IP port numbers.

.-'-

Inputs

VAR _INPUT
sSrvNetId : T AmsNetId := '';
sLocalHost : T IPv4Addr := '';
nLocalPort : UDINT;
bExecute : BOOL;
tTimeout : TIME := T#5s;

END VAR

TF6310 Version: 1.4.3 23

PLC AP BECKHOFF

Name Type Description

sSrvNetld T_AmsNetld |String containing the network address of the TwinCAT TCP/

IP Connection Server. For the local computer (default) an empty string may be
specified.

sLocalHost |T_IPv4Addr |Local server IP address (Ipv4) in the form of a string (e.g. '172.13.15.2"). For a
server on the local computer (default), an empty string may be entered.

nLocalPort UDINT Local server IP port (e.g. 200).
bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
E- Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hListener : T HSOCKET;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_100].
hListener |T_HSOCKE |Connection handle [» 59] to the new listener socket.
T
Requirements
Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tceplp (communication)
5.1.5 FB_SocketAccept
FB_SocketAccept
—s5rvMetld bAcceptedf—
— hListener bBusyr—
—bExecute bErrork—
—{tTimeout nerrld —
hSocketf—

The remote client connection requests arriving at the TwinCAT TCP/IP Connection Server have to be
acknowledged (accepted). The function block FB_SocketAccept accepts the incoming remote client
connection requests, opens a new remote client socket and returns the associated connection handle. The
connection handle is required by the function blocks FB SocketSend [P 25] and FB SocketReceive [P 27], for
example, in order to exchange data with a remote client. All incoming connection requests first have to be
accepted. If a connection is no longer required or undesirable, it can be closed with the function block

FB SocketClose [P 21].

A server implementation requires at least one instance of this function block. This instance has to be called
cyclically (polling) from a PLC task. The function block can be activated via a positive edge at the bExecute
input (e.g. every 5 seconds).

If successful, the bAccepted output is set, and the connection handle to the new remote client is returned at
the hSocket output. No error is returned if there are no new remote client connection requests. Several
remote clients can establish a connection with the server at the same time. The connection handles of

24 Version: 1.4.3 TF6310

BECKHOFF PLC API

several remote clients can be retrieved sequentially via several function block calls. Each connection handle
for a remote client can only be retrieved once. It is recommended to keep the connection handles in a list
(array). New connections are added to the list, and closed connections must be removed from the list.

.+

Inputs
VAR INPUT
sSrvNetId : T AmsNetId := '';
hListener : T _HSOCKET;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR
Name Type Description
sSrvNetld T_AmsNetld |String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string may be
specified.
hListener T_HSOCKE |Connection handle [P 59] of the listener socket. This handle must first be
T requested via the function block FB SocketListen [» 23].
bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
= Outputs
VAR OUTPUT
bAccepted : BOOL;
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hSocket : T HSOCKET;
END_ VAR
Name Type Description
bAccepted |BOOL This output is set if a new connection to a remote client was established.
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_100].
hSocket T_HSOCKE |Connection handle [» 59] of a new remote client.
T
Requirements
Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)
5.1.6 FB_SocketSend
FB_SocketSend
—{=SrvMetld bBusyr—
—hSocket bErrorf—
—{cbLen nErrld f—
—p5rc
—{bExecute
—tTimeaout

TF6310 Version: 1.4.3 25

PLC AP BECKHOFF

Using the function block FB_SocketSend, data can be sent to a remote client or remote server via the
TwinCAT TCP/IP Connection Server. A remote client connection will first have to be established via the

function block FB _SocketAccept [P 24], or a remote server connection via the function block
FB SocketConnect [P 20].

* Inputs
VAR INPUT
sSrvNetId : T AmsNetId := '';
hSocket : T HSOCKET;
cbLen : UDINT;
pSrc : POINTER TO BYTE;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR
Name Type Description
sSrvNetld T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string
may be specified.
hSocket T_HSOCKET Connection handle [» 59] of the communication partner to which data
are to be sent.
cbLen UDINT Number of date to be sent in bytes.
pSrc POINTER TO BYT |Address (pointer) of the send buffer.
E
bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.

@® Setting the execution time of the function block

1 If the transmit buffer of the socket is full, for example because the remote communication partner
receives the transmitted data not quickly enough or large quantities of data are transmitted, the
FB_SocketSend function block will return ADS timeout error 1861 after the tTimeout time. In this
case, the value of the tTimeout input variable has to be increased accordingly.

L Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END_ VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active
until acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this
output is set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_100].
Requirements
Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Teplp (communication)

26 Version: 1.4.3 TF6310

BECKHOFF PLC AP

5.1.7 FB_SocketReceive
FB_SocketReceive

—{z5rwMetld bBusy—
—thSocket bErrorf—
—lchlLen nErrld f—
—pDest nRecBytesk—
—{bExecute

—{tTimeout

Using the function block FB_SocketReceive, data from a remote client or remote server can be received via
the TwinCAT TCP/IP Connection Server. A remote client connection will first have to be established via the

function block FB_SocketAccept [P 24], and a remote server connection via the function block

FB SocketConnect [P_20]. The data can be received or sent in fragmented form (i.e. in several packets) within
a TCP/IP network. It is therefore possible that not all data may be received with a single call of the
FB_SocketReceive instance. For this reason, the instance has to be called cyclically (polling) within the PLC
task, until all required data have been received. During this process, an rising edge is generated at the
bExecute input, e.g. every 100 ms. If successful, the data received last are copied into the receive buffer.
The nRecBytes output returns the number of the last successfully received data bytes. If no new data could
be read during the last call, the function block returns no error and nRecBytes == zero.

In a simple protocol for receiving, for example, a null-terminated string on a remote server, the function block
FB_SocketReceive, for example, will have to be called repeatedly until the null termination was detected in
the data received.

® Settimeout value

1 If the remote device was disconnected from the TCP/IP network (on the remote side only) while the
local device is still connected to the TCP/IP network, the function block FB_SocketReceive returns
no error and no data. The open socket still exists, but no data are received. The application may
wait forever for data in this case. It is recommended to implement timeout monitoring in the PLC
application. If not all data were received after a certain period, e.g. 10 seconds, the connection has
to be closed and reinitialized.

.+

Inputs
VAR INPUT
sSrvNetId : T AmsNetId := '';
hSocket : T HSOCKET;
cbLen : UDINT;
pDest : POINTER TO BYTE;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END_ VAR
Name Type Description

sSrvNetld T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string may
be specified.

hSocket T_HSOCKET |Connection handle [»_59] of the communication partner from which data
are to be received.

cbLen UDINT Maximum available buffer size (in bytes) for the data to be read.
pDest POINTER TO BY |Address (pointer) of the receive buffer.
TE

bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
L Outputs
VAR OUTPUT

bBusy : BOOL;

bError : BOOL;

TF6310 Version: 1.4.3 27

PLC AP BECKHOFF

nErrId : UDINT;
nRecBytes : UDINT;

END_VAR

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this
output is set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number.

nRecBytes |UDINT Number of the last successfully received data bytes.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)
5.1.8 FB_SocketUdpCreate
FB_SocketUdpCreate
—s5rviNetld bBusyf—
— sLocalHost bErrorf—
—{nLocalPort nerrld f—
— bExecute hSocketE—
—tTimeout

The function block FB_SocketUdpCreate can be used to open a client/server socket for the User Datagram
Protocol (UDP). If successful, a new socket is opened, and the associated socket handle is returned at the

hSocket output. The handle is required by the function blocks FB SocketUdpSendTo [» 29] and
FB SocketUdpReceiveFrom [P_31], for example, in order to exchange data with a remote device. If a UDP

socket is no longer required, it can be closed with the function block FB SocketClose [P 21]. The port address
nLocalHost is internally reserved by the TCP/IP Connection Server for the UDP protocol (a "bind" is carried
out). Several network adapters may exist in a PC. The input parameter sLocalHost determines the network
adapter to be used. If the sLocalHost input variable is ignored (empty string), the TCP/IP Connection Server
uses the default network adapter. This is usually the first network adapter from the list of the network
adapters in the Control Panel.

i o

i
i

.-'-

Automatically created network connections

If an empty string was specified for sLocalHost when FB_SocketUdpCreate was called and the PC
was disconnected from the network, the system will open a new socket under the software loopback
IP address: '127.0.0.1".

Automatically created network connections with several network adapters

If two or more network adapters are installed in the PC and an empty string was specified as
sLocalHost, and the default network adapter was then disconnected from the network, the new
socket will be opened under the IP address of the second network adapter.

Setting a network address

In order to prevent the sockets from being opened under a different IP address, you can specify the
sLocalHost address explicitly or check the returned address in the handle variable (hSocket), close
the socket and re-open it.

Inputs

VAR INPUT
sSrvNetId : T AmsNetId := '';

sLocalHost : T IPv4Addr :

28

Version: 1.4.3 TF6310

BECKHOFF PLC API

nLocalPort : UDINT;

bExecute : BOOL;
tTimeout : TIME:= T#5s;
END VAR
Name Type Description

sSrvNetld T_AmsNetld |String containing the network address of the TwinCAT TCP/

IP Connection Server. For the local computer (default) an empty string may
be specified.

sLocalHost T_IPv4Addr |Local IP address (Ipv4) of the UDP client/server socket as a string (e.g.
'172.33.5.1"). An empty string may be specified for the default network

adapter.
nLocalPort UDINT Local IP port number of the UDP client/server socket (e.g. 200).
bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
L Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hSocket : T _HSOCKET;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output
is set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [»_100].
hSocket T_HSOCKET |Handle of the newly opened UDP client/server socket [» 59].
Requirements
Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tceplp (communication)
5.1.9 FB_SocketUdpSendTo
FB_SocketUdpSendTo
—sSrvMNetld bBusy—
—hSocket bErrorg—
—{sRemoteHost nErrld —
—nRemotePort
—cbLen
—p5rc
—bExecute
—tTimeout

The function block FB_SocketUdpSendTo can be used to send UDP data to a remote device via the
TwinCAT TCP/IP Connection Server. The UDP socket must first be opened with the function block

FB SocketUdpCreate [» 28].

TF6310 Version: 1.4.3 29

PLC AP BECKHOFF

.*

Inputs

VAR _INPUT
sSrvNetId : T_AmsNetId := '';
hSocket : T HSOCKET;

sRemoteHost : T_IPv4Addr;
nRemotePort : UDINT;

cbLen : UDINT;
pSrc : POINTER TO BYTE;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END_VAR
Name Type Description
sSrvNetld T_AmsNetld |String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty
string may be specified.
hSocket T_HSOCKE |Handle of an opened UDP socket [» 59].
T
sRemoteHost T_IPv4Addr |IP address (Ipv4) in string form (e.g. '172.33.5.1") of the remote
device to which data is to be sent. An empty string can be entered
on the local computer for a device.
nRemotePort UDINT IP port number (e.g. 200) of the remote device to which data is to be
sent.
cbLen UDINT Number of date to be sent in bytes. The maximum number of data
bytes to be sent is limited to 8192 bytes (constant
TCPADS_MAXUDP_BUFFSIZE in the library in order to save
storage space).
pSrc POINTER |Address (pointer) of the send buffer.
TO BYTE
bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.

@® Setting the size of the received data bytes

Available in product version: TwinCAT TCP/IP Connection Server v1.0.50 or higher: The maximum
number of data bytes to be received can be increased (only if absolutely necessary).

TwinCAT 2

1. Redefine global constant in the PLC project (in the sample the maximum number of data bytes to be
received is to be increased to 32000):
VAR GLOBAL CONSTANT
TCPADS MAXUDP BUFFSIZE : UDINT := 32000;
END VAR
2. Activate option Replace constants in the dialog of the TwinCAT PLC control
(Project > Options ... > Build).
3. Rebuild Project.

TwinCAT 3

In TwinCAT 3, this value can be edited via a parameter list of the PLC library (from version 3.3.4.0).

30 Version: 1.4.3 TF6310

BECKHOFF PLC API

General:

Title: Tc2_Tcplp

Version: 3.34.0

Company: Beckhoff Automation GmbH (Public key token:)
Repository: System (C:\TwinCAT\3. 1\Components\Plc\Managed Libraries)
Description: TwinCAT TCP/IP Connection Server Library

Maore...

Contents: |

=gl T2 Toplp, 3.3.4.0 Beckhoff Automaton GmbH) || Inputs/Outputs Documentation
[Te2_Tepip.tme

N VAR_GLOBAL CONSTANT Param
+-1J) Data types

=12 Global Variables Name Type Inherited from Address Initial Comment
ﬂ: Global_Variables @ TCPADS_MAXUDP_BUFFSIZE UDINT @ 200
@ Param

+-10 PoOUs

+-I2) Version

Close

= Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains
active until acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this
output is set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP_Connection Server error number [>_100].
Requirements
Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)

5.1.10 FB_SocketUdpReceiveFrom

FB_SocketUdpReceiveFrom
—s5rvMetld bBusy
— hSocket bErrar
—chlLen nErrld
—pDest sRemoteHost
— bExecute nRemotePort
—tTimeout nRecBytes

Using the function block FB_SocketUdpReceiveFrom, data from an open UDP socket can be received via
the TwinCAT TCP/IP Connection Server. The UDP socket must first be opened with the function block

FB SocketUdpCreate [» 28]. The instance of the FB_SocketUdpReceive function block has to be called
cyclically (polling) within the PLC task. During this process, an rising edge is generated at the bExecute

TF6310 Version: 1.4.3 31

PLC API

BECKHOFF

input, e.g. every 100 ms. If successful, the data received last are copied into the receive buffer. The
nRecBytes output returns the number of the last successfully received data bytes. If no new data could be
read during the last call, the function block returns no error and nRecBytes == zero.

.+

Inputs
VAR INPUT
sSrvNetId : T AmsNetId := '';
hSocket : T_HSOCKET;
cbLen : UDINT;
pDest : POINTER TO BYTE;
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR
Name Type Description
sSrvNetld T_AmsNetld |String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string may be
specified.
hSocket T_HSOCKE |Handle of an opened UDP socket [»_59], whose data are to be received.
T
cbLen UDINT Maximum available buffer size (in bytes) for the data to be read. The maximum
number of data bytes to be received is limited to 8192 bytes (constant
TCPADS_MAXUDP_BUFFSIZE in the library in order to save storage space).
pDest POINTER |Address (pointer) of the receive buffer.
TOBYTE
bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.

@® Setting the size of the received data bytes

Available in product version: TwinCAT TCP/IP Connection Server v1.0.50 or higher: The maximum
number of data bytes to be received can be increased (only if absolutely necessary).

TwinCAT 2

1. Redefine global constant in the PLC project (in the sample the maximum number of data bytes to be
received is to be increased to 32000):
VAR GLOBAL CONSTANT

TCPADS MAXUDP BUFFSIZE

END VAR

2. Activate option Replace constants in the dialog of the TwinCAT PLC control
(Project > Options ... > Build).

3. Rebuild Project.

TwinCAT 3

: UDINT := 32000;

In TwinCAT 3, this value can be edited via a parameter list of the PLC library (from version 3.3.4.0).

32

Version: 1.4.3 TF6310

BECKHOFF PLC API
General:
Title: Tc2_Tcplp
Version: 3.3.4.0
Company: Beckhoff Automation GmbH (Public key token:)
Repository: System (C:\TwinCAT\3. 1\Components\Plc\Managed Libraries)
Description: TwinCAT TCP/IP Connection Server Library
More. ..
Contents: I
=gl T2 Toplp, 3.3.4.0 Beckhoff Automaton GmbH) || Inputs/Outputs Documentation |
L] Te2 Teptp. tme VAR_GLOBAL CONSTANT Param |
+-I2) Data types |
=12 Global Variables Name Type Inherited from Address Initial Comment |
@ Global_variables @ TCPADS_MAXUDP_BUFFSIZE UDINT © 57200 .
ﬂ Param I
+-J) poOUs |
+-12) Version I
|
= Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
sRemoteHost : T IPv4Addr := '';
nRemotePort : UDINT;
nRecBytes : UDINT;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP_Connection Server error number [»_100].
sRemoteHost|T_IPv4Addr |If successful, IP address (Ipv4) of the remote device whose data were received.
nRemotePort [UDINT If successful, IP port number of the remote device whose data were received
(e.g. 200).
nRecBytes |UDINT Number of data bytes last successfully received.
Requirements

Development environment

Target system type

PLC libraries to include (cate-
gory group)

TwinCAT v3.1

.0

PC, or CX (x86, X64, ARM)

Tc2_Tcplp (communication)

5.1.11

FB_SocketUdpAddMulticastAddress

FB_SocketUdpadd™ulticastAddress
—s5rvhletId bBusy F—
—hSocket bErrar —
—sMulkicast Addr nErId F—
—bExecute
—tTirneout
TF6310 Version: 1.4.3 33

PLC AP BECKHOFF

Binds the server to a multicast IP address so that multicast packages can be received. This function block
expects an already established UDP socket connection, which can be established via the function block

FB SocketUdpCreate [»_28].

* Inputs
VAR INPUT
sSrvNetId : T AmsNetId := '';
hSocket : T _HSOCKET;
sMulticastAddr : STRING(15);
bExecute : BOOL;
tTimeout : TIME := T#5s;
END_VAR
Name Type Description
sSrvNetld T_AmsNetld |String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string
may be specified.
hSocket T_HSOCKE |Connection handle [» 59] of the listener socket. This handle must first be
T requested via the function block FB SocketUdpCreate [» 28].
sMulticastAddr T_IPv4Addr |Multicast IP address to which the binding should take place.
bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
= Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this
output is set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_100].
Requirements
Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)

5.1.12 FB_SocketUdpDropMulticastAddress

FB_SocketUdpDropMulticastAddress
—s3ryhletId bBusy F—
—hSaocket bErrar F—
—sMulkicast Addr nErrId —
—bExecute
—tTimeouk

Removes the binding to a multicast IP address that was previously set up via the function block
FB SocketUdpAddMulticastAddress [» 33].

34 Version: 1.4.3 TF6310

BECKHOFF PLC API

* Inputs
VAR _INPUT
sSrvNetId : T_AmsNetId := '';
hSocket : T HSOCKET;
sMulticastAddr : STRING(15);
bExecute : BOOL;
tTimeout : TIME := T#5s;
END VAR
Name Type Description
sSrvNetld T_AmsNetl [String containing the network address of the TwinCAT TCP/
d IP Connection Server. For the local computer (default) an empty string may
be specified.
hSocket T_HSOCK |Connection handle [» 59] of the listener socket. This handle must first be
ET requested via the function block FB SocketUdpCreate [»_28].

sMulticastAddr T_IPv4Add |Multicast IP address to which the binding should take place.
r

bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
L Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END_VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output
is set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [»_100].

Requirements
Development environment Target system type PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Teplp (communication)
5.1.13 FB_TIsSocketConnect

FB_TlsSocketConnect
— hSacket bBusyF—
—{=Srvietld bErrorf—
—{sRemoteHost nErrld f—
—nRemotePort
—flaags
—bExecute
—{tTimeout

The FB_TIsSocketConnect function block enables a client to establish a new TCP/IP connection to a remote
server via the TwinCAT TCP/IP Connection Server, secured via TLS. If successful, a new socket is opened,
and the associated connection handle is returned at the hSocket output. The connection handle is required
by the function blocks FB SocketSend [P 25] and FB SocketReceive [P 27], for example, in order to exchange
data with a remote server. If a connection is no longer required, it can be closed with the function block

TF6310 Version: 1.4.3 35

PLC API

BECKHOFF

FB SocketClose [P 21]. Several clients can establish a connection with the remote server at the same time.

For each new client, a new socket is opened and a new connection handle is returned. The TwinCAT TCP/
IP Connection Server automatically assigns a new IP port number for each client. The TLS parameters can

be defined via the function blocks FB TlsSocketAddCa [» 40], FB TlsSocketAddCrl [P 41],
FB TlsSocketSetPsk [P 43] and FB TIsSocketSetCert [P 42]. Programming samples for their use can be

found in our samples.

.-'-

Inputs
VAR _INPUT
sSrvNetId : T _AmsNetId:='"';
sRemoteHost : STRING(TCPADS TLS HOSTNAME SIZE):='"';
nRemotePort : UDINT:=0;
flags : ST TlsConnectFlags:=DEFAULT TLSCONNECTFLAGS;
bExecute : BOOL;
tTimeout : TIME:=T#45s; (*!!!¥*)
END VAR
Name Type Description
sSrvNetld T_AmsNetld String containing the network address of the
TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.
sRemoteHost STRING(TCPADS_TLS_HOS|IP address (Ipv4) of the remote server in the form of a
TNAME_SIZE) string (e.g. 172.33.5.1). An empty string can be entered
on the local computer for a server.
nRemotePort UDINT IP port number of the remote server (e.g. 200).
flags ST TIsConnectFlags [P 57] Additional (optional) client connection parameters.
bExecute BOOL The function block is activated by a positive edge at this
input.
tTimeout TIME Maximum time allowed for the execution of the function
block.

i

Setting the maximum execution time of the function block

Do not set the value "tTimeout" too low, as timeout periods of > 30 s can occur in case of a network
interruption. If the value is too low, command execution would be interrupted prematurely, and ADS

error code 1861 (timeout elapsed) would be returned instead of the Winsocket error
WSAETIMEDOUT.

#/E Inputs/outputs

VAR IN OUT
hSocket :
END_ VAR

T HSOCKET;

Name

Type

Description

hSocket

T_HSOCKET

TCP/IP connection handle [»_59] to the newly opened
local client socket

L Outputs

VAR OUTPUT
bBusy
bError :
nErrId :

END VAR

: BOOL;
BOOL;
UDINT;

36

Version: 1.4.3

TF6310

BECKHOFF PLC API

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active
until acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this
output is set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_100].

Requirements

Development environment

Target platform

PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later
TwinCAT v3.1.0

PC or CX (x86, x64, ARM)

Tc2_Tcplp (Communication)

5.1.14 FB_TIsSocketListen

—hListener
—sSrvMNetld
—sLocalHast
—nLocalPort
—flags
—bExecute
—{tTimeout

FB_TlsSocketListen

bBusyt—
bErrorf—
nErrld f—

The function block FB_TLsSocketListen can be used to open a new listener socket secured via TLS via the
TwinCAT TCP/IP Connection Server. Via a listener socket, the TwinCAT TCP/IP Connection Server can
'listen' for incoming connection requests from remote clients. The socket handle created with the function
block FB TIsSocketCreate [P 38] can then be used by the function block FB SocketAccept [P 24] to accept an
incoming client request. If a listener socket is no longer required, it can be closed with the function block

FB SocketClose [P 21]. The listener sockets on an individual computer must have unique IP port numbers.
Programming samples for using this function block can be found in our samples.

* Inputs

VAR INPUT

sSrvNetId : T AmsNetId:='"';
sLocalHost : T IPv4Addr:='"';

nLocalPort : UDINT:=0;

flags : ST TlsListenFlags:=DEFAULT TLSLISTENFLAGS;
bExecute : BOOL;
tTimeout : TIME:=T#5s;

END_ VAR

TF6310

Version: 1.4.3

37

PLC API BECKHOFF

Name Type Description

hListener T HSOCKET Socket handle, which was created via the function block
FB_TIsSocketCreate.

sSrvNetld T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty
string may be specified.

sLocalHost |T_IPv4Addr Local server IP address (Ipv4) in the form of a string (e.g.
172.13.15.2). For a server on the local computer (default), an empty
string may be entered.

nLocalPort UDINT Local server IP port (e.g. 200).

flags ST TlsListenFlags Additional (optional) server connection settings.

[» 58]
bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.

#/E Inputs/outputs

VAR IN OUT
hListener : T HSOCKET;
END VAR
Name Type Description
hListener T_HSOCKET Connection handle [» 59] to the new listener socket.
L Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [»_100].
Requirements

Development environment

Target platform

PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later
TwinCAT v3.1.0

PC or CX (x86, x64, ARM)

Tc2_Tcplp (Communication)

5.1.15 FB_TIsSocketCreate
FB_TlsSocketCreate
—sSrvNetld bBusy [~
—bListener bError—
— bExecute nErrld—
—tTimeout hSocket|—
38 Version: 1.4.3 TF6310

BECKHOFF PLC API

The function block FB_TlsSocketCreate can be used to create a new socket via the TwinCAT TCP/IP
Connection Server, either for a server (bListener:=true) or client application (bListener:=false). Via a listener
socket, the TwinCAT TCP/IP Connection Server can 'listen' for incoming connection requests from remote
clients. If successful, the associated connection handle (hSocket) is returned at the hListner output. This
handle is required by the function block FB TIsSocketListen [»_37], and subsequently FB SocketAccept [P 24].
If a listener socket is no longer required, it can be closed with the function block FB SocketClose [P 21]. After
the execution of the function block FB_TlsSocketCreate TLS parameters can be set to secure the
communication connection. This is done using the function blocks FB TlsSocketAddCa [P 40],

FB TIsSocketAddCrl [P 41], EB TIsSocketSetCert [P 42] and FB TIsSocketSetPsk [P 43]. Programming

samples for this can be found in our samples.

* Inputs

VAR _INPUT
sSrvNetId : T AmsNetId:='"';
bListener : BOOL:=FALSE;

bExecute : BOOL;
tTimeout : TIME:=T#5s;
END VAR
Name Type Description
sSrvNetld T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string
may be specified.
bListener BOOL Creates a new socket handle.
bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
L Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hSocket : T_HSOCKET;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output
is set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_100].
hSocket T_HSOCKET Connection handle [P 59] for the new socket.

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later PC or CX (x86, x64, ARM) Tc2_Tceplp (Communication)

TwinCAT v3.1.0

TF6310 Version: 1.4.3 39

PLC AP BECKHOFF

5.1.16 FB_TIsSocketAddCa

FB_TIsSocketAddCa
—{s5rvMetld bBusyt—
— hSocket bErrorf—
—sCaFath nErrld b—
— bExecute
—tTimeout

The FB_TIsSocketAddCa function block is used to configure the path to a CA certificate for an existing
socket handle. The certificate file must be in PEM format. Programming samples for using this function block
can be found in our samples.

.-*-

Inputs
VAR INPUT
sSrvNetId : T AmsNetId:='"';
hSocket : T HSOCKET;
sCaPath : STRING(TCPADS TLS CERTIFICATE PATH SIZE):='"';
bExecute : BOOL;
tTimeout : TIME:=T#5s;
END VAR
Name Type Description
sSrvNetld T_AmsNetld String containing the network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an
empty string may be specified.
hSocket T HSOCKET Socket handle.
sCaPath STRING(TCPADS_TLS CERTI|Path to the CA's certificate file.
FICATE_PATH_SIZE)
bExecute BOOL The function block is activated by a positive edge at this
input.
tTimeout TIME Maximum time allowed for the execution of the function
block.
L Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [»_100].

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later PC or CX (x86, x64, ARM) Tc2_Tcplp (Communication)

TwinCAT v3.1.0

40 Version: 1.4.3 TF6310

BECKHOFF PLC AP

5.1.17 FB_TisSocketAddCrl

FB_TlsSocketAddCrl
—s5rvMetld bBusyp—
—hSocket bErrorf—
—sCrlPath nErrld f—
—bExecute
—{tTimeout

The function block FB_TIsSocketAddCrl is used to specify the path to a CRL file for an existing socket
handle. The CRL must be in PEM format. Programming samples for using this function block can be found in
our samples.

.-*-

Inputs
VAR_INPUT
sSrvNetId : T AmsNetId:='"';
hSocket : T_HSOCKET;
sCrlPath : STRING(TCPADS_TLS_CERTIFICATE_PATH_SIZE)::";
bExecute : BOOL;
tTimeout : TIME:=T#5s;
END VAR
Name Type Description
sSrvNetld T _AmsNetld String containing the network address of the TwinCAT TCP/

IP Connection Server. For the local computer (default) an
empty string may be specified.
hSocket T _HSOCKET Socket handle.

sCrlPath STRING(TCPADS_TLS_CER |Path to the CRL file.
TIFICATE_PATH_SIZE)

bExecute BOOL The function block is activated by a positive edge at this input.
tTimeout TIME Maximum time allowed for the execution of the function block.
L Outputs
VAR OUTPUT

bBusy : BOOL;

bError : BOOL;
nErrId : UDINT;

END VAR

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [»_100].

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later PC or CX (x86, x64, ARM) Tc2_Teplp (Communication)

TwinCAT v3.1.0

TF6310 Version: 1.4.3 41

PLC API

BECKHOFF

5.1.18

FB_TisSocketSetCert

—=SrvMetld
— hSocket
—=CertPath
—=KeyPath
—=KeyPwd
— bExecute
—tTimeout

FB_TlsSocketSetCert

bBusyp—

bErrorf—
nerrid —

The function block FB_TIsSocketSetCert can be used to configure a client/server certificate that is to be
used for a specific socket handle. The certificates must be in PEM format. Programming samples for using

this function block can be found in our samples.

* Inputs
VAR INPUT
sSrvNetId : T AmsNetId:='"';
hSocket : T HSOCKET;
sCertPath : STRING(TCPADS TLS CERTIFICATE PATH SIZE):='"';
sKeyPath : STRING(TCPADS TLS CERTIFICATE PATH SIZE):='"';
sKeyPwd : STRING (TCPADS_TLS_KEY PASSWORD_SIZE) :='";
bExecute : BOOL;
tTimeout : TIME:=T#5s;
END VAR
Name Type Description
sSrvNetld T_AmsNetld String containing the network address of the
TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.
hSocket T HSOCKET Socket handle.
sCertPath STRING(TCPADS_TLS CERTIFI |Path to the file with the client/server certificate.
CATE_PATH_SIZE)
sKeyPath STRING(TCPADS_TLS_CERTIFI |Path to the file with the client/server private key.
CATE_PATH_SIZE)
sKeyPwd STRING(TCPADS_TLS KEY_PA |Optional, if the private key is secured with a password.
SSWORD_SIZE)
bExecute BOOL The function block is activated by a positive edge at this
input.
tTimeout TIME Maximum time allowed for the execution of the function
block.
L Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
Name Type Description
bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.
bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.
nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_100].

42

Version: 1.4.3

TF6310

BECKHOFF PLC API

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later PC or CX (x86, x64, ARM) Tc2_Tcplp (Communication)

TwinCAT v3.1.0

5.1.19 FB_TisSocketSetPsk

FB_TlsSocketSetPsk
—s5rvMetld bBusyf—
— hSocket bErrorf—
—sIdentity nErrld f—
—pskkey
—pskKeylLen
— bExecute
—tTimeout

The function block FB_TIsSocketSetPsk can be used to configure a pre-shared secret for an existing socket
handle. Programming samples for using this function block can be found in our samples.

.-*-

Inputs
VAR INPUT
sSrvNetId : T AmsNetId:='"';
hSocket : T_HSOCKET;
sIdentity : STRING(TCPADS TLS PSK IDENTITY SIZE):='"';
pskKey : PVOID:=0;
pskKeyLen : UDINT (0..TCPADS TLS MAX PSK KEY SIZE) :=0;
bExecute : BOOL;
tTimeout : TIME:=T#5s;
END VAR
Name Type Description
sSrvNetld T_AmsNetld String containing the network address of the
TwinCAT TCP/IP Connection Server. For the local
computer (default) an empty string may be specified.
hSocket T _HSOCKET Socket handle.
sldentity STRING(TCPADS_TLS PSK_IDENTI |A freely selectable identity for the PSK.
TY_SIZE)
pskKey PVOID Pointer to a byte array containing the PSK.
pskKeyLen |UDINT(0.. TCPADS_TLS MAX_PSK_K|Length of pskKey.
EY_SIZE)
bExecute BOOL The function block is activated by a positive edge at
this input.
tTimeout TIME Maximum time allowed for the execution of the
function block.
L Outputs
VAR OUTPUT
bBusy : BOOL;

bError : BOOL;
nErrId : UDINT;
END_ VAR

TF6310 Version: 1.4.3 43

PLC AP BECKHOFF

Name Type Description

bBusy BOOL This output is active if the function block is activated. It remains active until
acknowledgement.

bError BOOL If an error should occur during the transfer of the command, then this output is
set once the bBusy output was reset.

nErrid UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [_100].

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later PC or CX (x86, x64, ARM) Tc2_Tcplp (Communication)

TwinCAT v3.1.0

5.1.20 Helper

5.1.20.1 FB_ClientServerConnection

FB_ClientServerConnection
— s5SreMetID bBusy—
—nMode bErrorf—
—sRemoteHost nErrld f—
—nRemotePort hsockett—
— bEnable gstate b —
—tReconnect

The function block FB_ClientServerConnection can be used to manage (establish or remove) a client
connection. FB_ClientServerConnection simplifies the implementation of a client application by
encapsulating the functionality of the two function blocks FB SocketConnect [P 20] and FB SocketClose [P 21]
internally. The integrated debugging output of the connection status facilitates troubleshooting in the event of
configuration or communication errors. In addition, a minimum client application only requires an instance of
the function block FB SocketSend [P_25] and/or an instance of the function block FB SocketReceive [P 27].

In the first step, a typical client application establishes the connection with the server via the
FB_ClientServerConnection function block. In the next step instances of FB_SocketSend and/or
FB_SocketReceive can be used to exchange data with the server. When a connection is closed depends on
the requirements of the application.

.-'-

Inputs
VAR INPUT
sSrvNetID : T_AmsNetID := '';
nMode : DWORD := 0;
sRemoteHost : T IPv4Addr := '';
nRemotePort : UDINT;
bEnable : BOOL;
tReconnect : TIME := T#45s; (*!!!¥%)
END VAR

44 Version: 1.4.3 TF6310

BECKHOFF PLC API
Name Type Description
sSrvNetID T_AmsNetl |String containing the AMS network address of the TwinCAT TCP/
D IP Connection Server. For the local computer (default) an empty string may be
specified.
nMode DWORD |Parameter flags (modes). The permissible parameters are listed here and can
be combined by ORing:
CONNECT_MODE_ENABLEDBG:
Activates logging of debug messages in the application log. In order to view the
debug messages open the TwinCAT System Manager and activate log view.
sRemoteHost | T_IPv4Add |IP address (Ipv4) of the remote server in the form of a string (e.g. '172.33.5.1").
r An empty string can be entered on the local computer for a server.
nRemotePort |UDINT IP port number of the remote server (e.g. 200).
bEnable BOOL As long as this input is TRUE, the system attempts to establish a new
connection at regular intervals until a connection was established successfully.
Once established, a connection can be closed again with FALSE.
tReconnect |TIME Cycle time used by the function block to try and establish the connection.

@® Setting the cycle time for the connection

1 The tReconnect value should not be set too low, since timeout periods of > 30 s may occur in the
event of a network interruption. If the value is too low, command execution would be interrupted
prematurely, and ADS error code 1861 (timeout elapsed) would be returned instead of the
Winsocket error WSAETIMEDOUT.

= Outputs
VARﬁOUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hSocket : T_HSOCKET;
eState : E _SocketConnectionState := eSOCKET DISCONNECTED;
END_VAR
Name Type Description
bBusy BOOL TRUE, as long as the function block is active.
bError BOOL Becomes TRUE if an error code occurs.
nErriD UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [»_100].
hSocket T_HSOCKET Connection handle [» 59] to the newly opened local client socket. If
successful, this variable is transferred to the instances of the function
blocks FB SocketSend [P 25] and/or FB SocketReceive [P 27].
eState E_SocketConnectionSt |Returns the current connection status [» 54].
ate

Sample of a call in FBD

PROGRAM MAIN
VAR

fbClientConnectionl

bConnectl

bBusyl

bErrorl

nErrIDl

hSocketl

eStatel
END VAR

: FB ClientServerConnection;

: BOOL;

: BOOL;

: BOOL;

: UDINT;

: T_HSOCKET;

: E_SocketConnectionState;

TF6310

Version: 1.4.3 45

PLC AP BECKHOFF

fhiClientConnection

FE_ClientServerConnection
"—=25nietlD bBusy bBusy1
COMNMECT _MODE_ENABLEDBG=154#30000000—nMaode bErrar—bErrarl
172166195 1sRemoteHost nErd—nErrlD1=16#00000000
24044nRemoteFort hSocket—hZocket]
bCaonnect!qbEnable eState—eState1=e30OCKET_CONNECTED
T#5stReconnect

Here you can find more application examples (and source code): Samples [P 63]

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tceplp (communication)

5.1.20.2 FB_ServerClientConnection

FB_ServerClientConnection
— hServer bBusyr—
—eMode bErrorg—
—sRemoteHaost nErriD —
—nRemotePort hSockett—
— bEnable eState—
—tReconnect

The function block FB_ServerClientConnection can be used to manage (establish or remove) a server
connection. FB_ServerClientConnection simplifies the implementation of a server application by
encapsulating the functionality of the three function blocks FB SocketListen [P 23], FB SocketAccept [P 24]
and FB SocketClose [P 21] internally. The integrated debugging output of the connection status facilitates
troubleshooting in the event of configuration or communication errors. In addition, a minimum server
application only requires an instance of the function block FB_SocketSend [» 25] and/or an instance of the
function block FB_SocketReceive [P 27].

In the first step a typical server application establishes the connection with the client via the
FB_ServerClientConnection function block (more precisely, the server application accepts the incoming
connection request). In the next step instances of FB_SocketSend and/or FB_SocketReceive can be used to
exchange data with the server. When a connection is closed depends on the requirements of the application.

* Inputs
VAR_INPUT
eMode : E_SocketAcceptMode := eACCEPT_ALL;
sRemoteHost : T IPv4Addr := '';
nRemotePort : UDINT := 0;
bEnable : BOOL;
tReconnect : TIME := T#ls;
END VAR

46 Version: 1.4.3 TF6310

BECKHOFF PLC API

Name |Type Description

eMode |E_SocketAcceptM |Defines whether all or only certain connections [»_54] are to be accepted.

ode

sRemote | T_IPv4Addr IP address (lpv4) in string form (e.g. '172.33.5.1") of the remote client whose

Host connection is to be accepted. For a client on the local computer an empty
string may be specified.

nRemot |UDINT IP port number (e.g. 200) of the remote client whose connection is to be

ePort accepted.

bEnable | BOOL As long as this input is TRUE, the system attempts to establish a new
connection at regular intervals until a connection was established successfully.
Once established, a connection can be closed again with FALSE.

tReconn |TIME Cycle time used by the function block to try to establish a connection.

ect

B nputs/Outputs

VAR _IN OUT
hServer : T _HSERVER;
END VAR
Name Type Description
hServer |hServer |Server handle [P 58]. This input variable has to be initialized via the
F CreateServerHnd [» 50] function.
L Outputs
VAR_OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
hSocket : T HSOCKET;
eState : E_SocketConnectionState := eSOCKET DISCONNECTED;
END VAR
Name |Type Description
bBusy |BOOL TRUE, as long as the function block is active.
bError |BOOL Becomes TRUE if an error code occurs.
nErrld | UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
I[P Connection Server error number [P_100].
hSocket |T_HSOCKET Connection handle [»_59] to the newly opened remote client socket. If
successful, this variable is transferred to the instances of the function
blocks FB SocketSend [P 25] and/or FB_SocketReceive [P 27].
eState |E_SocketConnectionSt |Returns the current connection status [P 54].
ate

Sample in FBD

The following sample illustrates initialization of a server handle variable. The server handle is then
transferred to three instances of the FB_ServerClientConnection function block.

PROGRAM MAIN

VAR

hServer
bListen

fbServerConnectionl

bConnectl
bBusyl

bErro
nErrI

rl
D1

hSocketl
eStatel

: T_HSERVER;
: BOOL;

: FB ServerClientConnection;
: BOOL;

: BOOL;

: BOOL;

: UDINT;

: T HSOCKET;

: E_SocketConnectionState;

TF6310

Version: 1.4.3 47

PLC AP BECKHOFF

fbServerConnection2 : FB_ ServerClientConnection;

bConnect?2 : BOOL;

bBusy2 : BOOL;

bError2 : BOOL;

nErrID2 : UDINT;

hSocket2 : T HSOCKET;

eState2 : E_SocketConnectionState;

fbServerConnection3 : FB ServerClientConnection;

bConnect3 : BOOL;

bBusy3 : BOOL;

bError3 : BOOL;

nErrID3 : UDINT;

hSocket3 : T HSOCKET;

eState3 : E_SocketConnectionState;
END VAR
Online View:

F_CreateServerHnd
=SrMetlD
"—sLocalHost
2404 4nLocalPort
LISTEM MODE_CLOSEALL OR COMMECT MODE_EMABLEDBGnMode
blListen—bEnahle
hSererqhSerer &

thSemerConnection

FB_ServerClientConnection
eACCERT _ALLqeMode bBusy hBusy1
"—sRemoteHost bError—bError
OI—nRemotePort hE D F—nErlD1=16&010000000
bCannect!qbEnable hSocket—h=ocket]
T#1 =qtReconnect eState—eStatel=230CEET_SUZSPENDED
hZemwerqhIemer &

thSemerConnection?

FB_ServerClientConnection
eACCERT _SEL_HOSTHeMode bBusy hBusy?
1727 2194 9sRemoteHost bError—bError2
OI—nRemotePort hE D F—nErlDZ2="16&10000000
bCannect2—bEnable hSocketr—hZ=ocket
T#1s—qtReconnect eStater—eState2=eS0OCKET_DISCONNECTED
hZemwerqhIerer &

thSemerConnection3

FB_ServerClientConnection
eACCERT _SEL_HOSTHeMode bBusy hBusy3
172166195 9sRemoteHost bError—bErrord
OI—nRemotePort hE D F—nErlDE="16&10000000
bCannect3qbEnable hSocketr—h=ockets
T#1s—qtReconnect eStater—eStated=eS0OCKET_CONMECTED
hZemwerqhIerer &

The first connection is activated (bConnectl = TRUE), but the connection has not yet been established
(passive open).

The second connection has not yet been activated (bConnect2 = FALSE) (closed).

The third connection has been activated (bConnect3 = TRUE) and a connection to the remote client has
been established.

Here you can find more application examples (and source code): Samples [P 63]

48 Version: 1.4.3 TF6310

BECKHOFF PLC API

Requirements
Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)
5.1.20.3 FB_ConnectionlessSocket
FB_ConnectionlessSocket
—s5SreMetID bBusyF—
—{nMode bErrorf—
—sLocalHost nErrID f—
—nLocalPort hSocketf—
—bEnable eStatef—
—tReconnect

A UDP socket can be managed (opened/generated and closed) with the function block
FB_ConnectionlessSocket. FB_ConnectionlessSocket simplifies the implementation of a UDP application by
encapsulating the functionality of the two function blocks FB SocketUdpCreate [P 28] and FB SocketClose
[»_21] already internally. The integrated debugging output of the socket status facilitates troubleshooting in
the event of configuration or communication errors. In addition, a minimum UDP application only requires an
instance of the function block SocketUdpSendTod [P 29] and/or an instance of the function block

FB SocketUdpReceiveFrom [P 31].

In the first step a typical UDP application opens a connection-less UDP socket with the function block
FB_ConnectionlessSocket. In the next step instances of FB_SocketUdpSendTo and/or
FB_SocketUdpReceiveFrom can be used for exchanging data with another communication device. When a
UDP socket is closed depends on the requirements of the application (e.g. in the event of a communication
error).

* Inputs
VAR INPUT
sSrvNetID : T AmsNetID := '';
nMode : DWORD := 0;
sLocalHost : T Ipv4Addr := '';
nLocalPort : UDINT;
bEnable : BOOL;
tReconnect : TIME := T#45s; (*!!!¥*)
END VAR
Name Type Description
sSrvNetID |T_AmsNetl |String containing the AMS network address of the TwinCAT TCP/
D IP Connection Server. For the local computer (default) an empty string may be
specified.
nMode DWORD |Parameter flags (modes). The permissible parameters are listed here and can be

combined by ORing.
CONNECT_MODE_ENABLEDBG:

Activates logging of debug messages in the application log. In order to view the
debug messages open the TwinCAT System Manager and activate log view.

sLocalHost |T_Ipv4Add |IP address (Ipv4) in string form (e.g. '172.33.5.1") of the local network adapter. An
r empty string may be specified for the default network adapter.

nLocalPort |UDINT IP port number (e.g. 200) on the local computer.

bEnable BOOL As long as this input is TRUE, attempts are made cyclically to open a UDP socket
until a connection has been established. An open UDP socket can be closed
again with FALSE.

tReconnect |TIME Cycle time with which the function block tries to open the UDP socket.

TF6310 Version: 1.4.3 49

PLC AP BECKHOFF

Setting the cycle time for the connection

o

1 The tReconnect value should not be set too low, since timeout periods of > 30 s may occur in the
event of a network interruption. If the value is too low, command execution would be interrupted
prematurely, and ADS error code 1861 (timeout elapsed) would be returned instead of the
Winsocket error WSAETIMEDOUT.

L Outputs
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
hSocket : T _HSOCKET;
eState : E_SocketConnectionlessState := eSOCKET_CLOSED;
END VAR
Name Type Description
bBusy BOOL TRUE, as long as the function block is active.
bError BOOL Becomes TRUE if an error code occurs.
nErriD UDINT If an bError output is set, this parameter returns the TwinCAT TCP/
IP Connection Server error number [»_100].
hSocket T_HSOCKET Connection handle [»_59] to the newly opened UDP socket. If
successful, this variable is transferred to the instances of the
function blocks FB SocketUdpSendTo [P 29] and/or
FB SocketUdpReceiveFrom [P 31].
eState E_SocketConnectionlessS |Returns the current connection status [» 55].
tate
Requirements
Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)
5.2 Functions
5.21 F_CreateServerHnd
F_CreateServerHnd
—{=SrvMetID F_CreateServerHndf—
—sLocalHost
—nLocalPort
—nMode
— hbEnable
— hServer

The function F_CreateServerHnd is used to initialize/set the internal parameters of a server handle variable
hServer. The server handle is then transferred to the instances of the function block

FB ServerClientConnection [P 46] via VAR _IN_OUT. An instance of the FB_ServerClientConnection function
block can be used to manage (establish or remove) a sever connection in a straightforward manner. The
same server handle can be transferred to several instances of the function block
FB_ServerClientConnection, in order to enable the server to establish several concurrent connections.

Syntax
FUNCTION F_CreateServerHnd : BOOL
VAR IN OUT

hServer : T _HSERVER;

50 Version: 1.4.3 TF6310

BECKHOFF PLC API
END VAR
VAR _INPUT
sSrvNetID : T_AmsNetID := '';
sLocalHost : STRING(15) := '';
nLocalPort : UDINT := 0;
nMode : DWORD := LISTEN MODE CLOSEALL (* OR CONNECT_ MODE_ENABLEDBG*) ;
bEnable : BOOL := TRUE;
END VAR
E- Return value
Name Type Description
F_CreateServerHnd BOOL Returns TRUE if everything is OK, FALSE if there is an incorrect
parameter value.
* Inputs
Name Type Description
sSrvNetID | T_AmsNetID |String containing the AMS network address of the TwinCAT TCP/
IP Connection Server. For the local computer (default) an empty string may be
specified.
sLocalHost |T_IPv4Addr |Local server IP address (Ipv4) in the form of a string (e.g. '172.13.15.2"). For a
server on the local computer (default), an empty string may be entered.
nLocalPort |UDINT Local server IP port (e.g. 200).
nMode DWORD Parameter flags (modes). The permissible parameters are listed here and can be
combined by ORing.
LISTEN_MODE_CLOSEALL:
All previously opened socket connections are closed (default).
CONNECT_MODE_ENABLEDBG:
Activates logging of debug messages in the application log. In order to view the
debug messages open the TwinCAT System Manager and activate log view.
bEnable BOOL This input determines the behavior of the listener socket. A listener socket
opened beforehand remains open as long as this input is TRUE. If this input is
FALSE, the listener socket is closed automatically, but only once the last
(previously) accepted connection was also closed.

/& |nputs/Outputs

Name Type Description

hServer T_HSERVER Server handle variable whose internal parameters are to be
initialized.

Example:

See FB ServerClientConnection [» 46].

Requirements

Development environment Target system type PLC libraries to include (cate-

gory group)

TwinCAT v3.1.0

PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)

Also see about this
T HSERVER [58]

TF6310

Version: 1.4.3 51

PLC AP BECKHOFF

5.2.2 HSOCKET_TO_STRING

HSOCKET_TO_STRING
—hSocket HSOCKET TO_STRING I—

The function converts the connection handle of type T_HSOCKET to a string (e.g. for debug outputs).

The returned string has the following format: "Handle:0xA[BCD] Local:a[aa].b[bb].c[cc].d[dd]:port
Remote:a[aa].b[bb].c[cc].d[dd]:port".

Example: "Handle:0x4001 Local:172.16.6.195:28459 Remote:172.16.6.180:2404"

Syntax
FUNCTION HSOCKET TO STRING : STRING
VAR INPUT
hSocket : T HSOCKET;
END VAR

E- Return value

Name Type Description
HSOCKET |STRING Contains the STRING representation of the connection handle.

_TO_STRI
NG

* Inputs

Name Type Description
hSocket |T_HSOCKET |The connection handle [» 59] to be converted.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tceplp (communication)
5.2.3 HSOCKET _TO_STRINGEX
HSOCKET_TO_STRINGEX
—hSocket HSOCKET_TO_STRINGEXf—
—bLocal
—bRemote

The function converts the connection handle of type T_HSOCKET to a string (e.g. for debug outputs).

The returned string has the following format: "Handle:0xA[BCD] Local:a[aa].b[bb].c[cc].d[dd]:port
Remote:a[aa].b[bb].c[cc].d[dd]:port".

Example: "Handle:0x4001 Local:172.16.6.195:28459 Remote:172.16.6.180:2404"

The parameters bLocal and bRemote determine whether the local and/or remote address information should
be included in the returned string.

Syntax

FUNCTION HSOCKET TO STRINGEX : STRING
VAR INPUT
hSocket : T HSOCKET;

52 Version: 1.4.3 TF6310

BECKHOFF PLC API

bLocal : BOOL;
bRemote : BOOL;
END VAR

E- Return value

Name Type Description

HSOCKET _TO_ST |STRING Contains the hex-based STRING representation of the connection
RINGEX handle.

* Inputs

Name Type Description

hSocket |T_HSOCKET |The connection handle [» 59] to be converted.

bLocal BOOL TRUE: Include the local address, FALSE: Exclude the local address.

bRemote |BOOL TRUE: Include the remote address, FALSE: Exclude the remote address.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)
5.2.4 SOCKETADDR_TO_STRING
SOCKETADDR_TO_STRING
—stSockAddr SOCKETADDR_TO_STRING p—

The function converts a variable of type ST_SockAddr to a string (e.g. for debug outputs).
The returned string has the following format: "a[aa].b[bb].c[cc].d[dd]:port"
Example: "172.16.6.195:80"

FUNCTION SOCKETADDR TO_ STRING : STRING
VAR INPUT

stSockAddr : ST SockAddr;
END VAR

E- Return value

Name Type Description

SOCKETADDR_TO |STRING Contains the STRING representation of the socket address.
_STRING

* Inputs

Name Type Description

stSockeAddr ST_SockAddr The variable to be converted.

See ST SockAddr [P 571

TF6310 Version: 1.4.3 53

PLC AP BECKHOFF

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)

5.3 Data types

5.31 E_SocketAcceptMode

E_SocketAcceptMode specifies which connections are accepted by the server.

Syntax

TYPE E_SocketAcceptMode:
(* Connection accept modes *)
(
eACCEPT ALL, (* Accept connection to all remote clients *)
eACCEPT_SEL_HOST, (* Accept connection to selected host address *)
eACCEPT SEL PORT, (* Accept connection to selected port address ¥*)
eACCEPT_SEL_ HOST PORT (* Accept connection to selected host and port address ¥*)
) 7
END TYPE

Values

Name Description

eACCEPT_ALL Accept connection to all remote clients.

eACCEPT_SEL_HOST Accept connection to selected host address.

eACCEPT_SEL_PORT Accept connection to selected port address.

eACCEPT_SEL _HOST_PORT Accept connection to selected host and port address.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)

5.3.2 E_SocketConnectionState

TCP/IP Socket Connection Status (eSOCKET_SUSPENDED == the status changes e.g. from
eSOCKET_CONNECTED => eSOCKET_DISCONNECTED).

Syntax

TYPE E SocketConnectionState:

(
e€SOCKET_DISCONNECTED,
eSOCKET CONNECTED,
e€SOCKET SUSPENDED

)i

END_TYPE

54 Version: 1.4.3 TF6310

BECKHOFF PLC API

Values

Name Description

eSOCKET_DISCONNECTED The connection is interrupted.

eSOCKET_CONNECTED The connection exists.

eSOCKET_SUSPENDED The status of the connection changes from disconnected to connected
or from connected to disconnected.

Requirements

Development environment Target system type PLC libraries to include (cate-

gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)
5.3.3 E_SocketConnectionlessState

Status information of a connection-less UDP socket (eSOCKET_TRANSIENT == the status changes from
eSOCKET_CREATED=>eSOCKET_CLOSED, for example).

Syntax

TYPE E_SocketConnectionlessState:
(

eSOCKET_CLOSED,

eSOCKET CREATED,

e€SOCKET TRANSIENT
) .

EﬁD_TYPE

Values

Name Description

eSOCKET_CLOSED The UDP socket is closed.

eSOCKET_CREATED The UDP socket is created.

eSOCKET_TRANSIENT The UDP socket changes from closed to open or from open to closed.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)
5.3.4 E_WinsockError
Syntax
TYPE E WinsockError :
(
WSOK,
WSAEINTR := 10004 ,
(* A blocking operation was interrupted by a call to WSACancelBlockingCall. *)
WSAEBADF := 10009 , (* The file handle supplied is not valid. *)
WSAEACCES := 10013 ,
(* An attempt was made to access a socket in a way forbidden by its access permissions. *)
WSAEFAULT := 10014 ,

(* The system detected an invalid pointer address in attempting to use a pointer argument in a call.
*)

WSAEINVAL = 10022 , (* An invalid argument was supplied. *)
WSAEMFILE = 10024 , (* Too many open sockets. *)
WSAEWOULDBLOCK := 10035 , (* A non-
blocking socket operation could not be completed immediately. *)
WSAEINPROGRESS := 10036 , (* A blocking operation is currently executing. *)

TF6310 Version: 1.4.3 55

PLC AP BECKHOFF

WSAEALREADY := 10037 , (* An operation was attempted on a non-
blocking socket that already had an operation in progress. ¥*)
WSAENOTSOCK := 10038 , (* An operation was attempted on something that is not a socket. *)
WSAEDESTADDRREQ := 10039 ,
(* A required address was omitted from an operation on a socket. *)
WSAEMSGSIZE := 10040 ,

(* A message sent on a datagram socket was larger than the internal message buffer or some other net
work limit, or the buffer used to receive a datagram into was smaller than the datagram itself. *)

WSAEPROTOTYPE := 10041 ,
(* A protocol was specified in the socket function call that does not support the semantics of the s
ocket type requested. ¥*)

WSAENOPROTOOPT := 10042 ,
(* An unknown, invalid, or unsupported option or level was specified in a getsockopt or setsockopt c
all. *)

WSAEPROTONOSUPPORT := 10043 ,

* The requested protocol has not been configured into the system, or no implementation for it exist
s. *)

WSAESOCKTNOSUPPORT := 10044 ,

(* The support for the specified socket type does not exist in this address family. *)
WSAEOPNOTSUPP := 10045 ,

(* The attempted operation is not supported for the type of object referenced. *)
WSAEPFNOSUPPORT := 10046 ,

(* The protocol family has not been configured into the system or no implementation for it exists. *

WSAEAFNOSUPPORT := 10047 ,
(* An address incompatible with the requested protocol was used. ¥*)
WSAEADDRINUSE := 10048 , (* Only one usage of each socket address (protocol/network address/
port) is normally permitted. *)
WSAEADDRNOTAVAIL := 10049 , (* The requested address is not valid in its context. *)
WSAENETDOWN := 10050 , (* A socket operation encountered a dead network. *)
WSAENETUNREACH := 10051 , (* A socket operation was attempted to an unreachable network. *)
WSAENETRESET := 10052 , (* The connection has been broken due to keep-
alive activity detecting a failure while the operation was in progress. *)
WSAECONNABORTED := 10053 ,
(* An established connection was aborted by the software in your host machine. ¥*)
WSAECONNRESET := 10054 , (* An existing connection was forcibly closed by the remote host. *)
WSAENOBUFS := 10055 ,

(* An operation on a socket could not be performed because the system lacked sufficient buffer space
or because a queue was full. ¥*)

WSAEISCONN := 10056 , (* A connect request was made on an already connected socket. *)

WSAENOTCONN := 10057 ,
(* A request to send or receive data was disallowed because the socket is not connected and (when se
nding on a datagram socket using a sendto call) no address was supplied. *)

WSAESHUTDOWN := 10058 ,
(* A request to send or receive data was disallowed because the socket had already been shut down in
that direction with a previous shutdown call. *)

WSAETOOMANYREFS := 10059 , (* Too many references to some kernel object. ¥*)

WSAETIMEDOUT := 10060 ,

(* A connection attempt failed because the connected party did not properly respond after a period o
f time, or established connection failed because connected host has failed to respond. *)

WSAECONNREFUSED := 10061 ,
(* No connection could be made because the target machine actively refused it. ¥*)
WSAELOOP := 10062 , (* Cannot translate name. *)
WSAENAMETOOLONG := 10063 , (* Name component or name was too long. *)
WSAEHOSTDOWN := 10064 ,
(* A socket operation failed because the destination host was down. *)
WSAEHOSTUNREACH := 10065 , (* A socket operation was attempted to an unreachable host. *)
WSAENOTEMPTY := 10066 , (* Cannot remove a directory that is not empty. *)
WSAEPROCLIM := 10067 ,

(* A Windows Sockets implementation may have a limit on the number of applications that may use it s
imultaneously. *)

WSAEUSERS := 10068 , (* Ran out of quota. *)

WSAEDQUOT := 10069 , (* Ran out of disk quota. *)

WSAESTALE := 10070 , (* File handle reference is no longer available. *)
WSAEREMOTE := 10071 , (* Item is not available locally. *)
WSASYSNOTREADY := 10091 ,

(* WSAStartup cannot function at this time because the underlying system it uses to provide network
services 1is currently unavailable. *)

WSAVERNOTSUPPORTED := 10092 , (* The Windows Sockets version requested is not supported. *)
WSANOTINITIALISED := 10093 ,

(* Either the application has not called WSAStartup, or WSAStartup failed. *)
WSAEDISCON := 10101 ,

(* Returned by WSARecv or WSARecvFrom to indicate the remote party has initiated a graceful shutdown
sequence. *)
WSAENOMORE := 10102 , (* No more results can be returned by WSALookupServiceNext. *)
WSAECANCELLED := 10103 ,
(* A call to WSALookupServiceEnd was made while this call was still processing. The call has been ca
nceled. *)
WSAEINVALIDPROCTABLE := 10104 , (* The procedure call table is invalid. *)
WSAEINVALIDPROVIDER := 10105 , (* The requested service provider is invalid. *)

56 Version: 1.4.3 TF6310

BECKHOFF PLC API

WSAEPROVIDERFAILEDINIT := 10106 ,

(* The requested service provider could not be loaded or initialized. *)
WSASYSCALLFAILURE := 10107 , (* A system call that should never fail has failed. *)
WSASERVICE NOT FOUND := 10108 ,

(* No such service is known. The service cannot be found in the specified name space. *)
WSATYPE NOT FOUND := 10109 , (* The specified class was not found. ¥*)
WSA E _NO MORE := 10110 , (* No more results can be returned by WSALookupServiceNext. *)
WSA E CANCELLED := 10111 ,

(* A call to WSALookupServiceEnd was made while this call was still processing. The call has been ca
nceled. *)

WSAEREFUSED := 10112 , (* A database query failed because it was actively refused. *)
WSAHOST _NOT FOUND := 11001 , (* No such host is known. *)
WSATRY AGAIN := 11002 ,

(* This is usually a temporary error during hostname resolution and means that the local server did
not receive a response from an authoritative server. *)
WSANO_ RECOVERY := 11003 , (* A non-recoverable error occurred during a database lookup. *)
WSANO_DATA := 11004 (* The requested name is valid and was found in the database, but it doe
s not have the correct associated data being resolved for. ¥*)
) i
END_TYPE

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)

5.3.5 ST_SockAddr

The structure contains address information of an open socket.

Syntax

TYPE ST SockAddr : (* Local or remote endpoint address *)
STRUCT

nPort : UDINT; (* Internet Protocol (IP) port. *)

sAddr : STRING(1l5); (* String containing an (Ipv4) Internet Protocol dotted address. *)
END_STRUCT

END TYPE

Values

Name Type Description

nPort UDINT Internet Protocol (IP) port

sAddr STRING(15) Internet Protocol address separated by periods (Ipv4) in the form of a string e.g.:
"172.34.12.3"

Requirements

Development environment Target system type PLC libraries to include (cate-

gory group)
TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Tcplp (communication)

5.3.6 ST_TisConnectFlags

Additional (optional) client connection parameters.

Syntax

TYPE ST TlsConnectFlags
STRUCT
bNoServerCertCheck: BOOL;
bIgnoreCnMismatch : BOOL;
END_STRUCT
END TYPE

TF6310 Version: 1.4.3 57

PLC API BECKHOFF
Values

Name Type Description

bNoServerCertCheck BOOL Disables validation of the server certificate.

blgnoreCnMismatch BOOL Ignored if the CommonName in the server certificate does not

match the host name specified as sRemoteHost.

Requirements

Development environment

Target platform

PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later
TwinCAT v3.1.0

PC or CX (x86, x64, ARM)

Tc2_Tcplp (Communication)

5.3.7

ST_TlisListenFlags

Additional (optional) server connection parameters.

Syntax

TYPE ST TlsListenFlags :

STRUCT
bNoClientCert :

END STRUCT

END TYPE

BOOL;

Values

Name Type

Description

bNoClientCert BOOL

Client certificate is not required.

Requirements

Development environment

Target platform

PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later
TwinCAT v3.1.0

PC or CX (x86, x64, ARM)

Tc2_Tcplp (Communication)

5.3.8

T_HSERVER

The variable of this type represents a TCP/IP Server Handle. The Handle has to be initialized with
F CreateServerHnd [P 50] bevor it can be used. In doing so the internal parameters of variables T_HSERVER

are set.

@® Preserve the default structure elements
1 The structure elements are not to be written or changed.

Requirements

Development environment

Target system type

PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0

PC, or CX (x86, X64, ARM)

Tc2_Tcplp (communication)

58

Version: 1.4.3

TF6310

BECKHOFF PLC API

5.3.9 T_HSOCKET

Variables of this type represent a connection handle or a handle of an open socket. Via this handle, data can
be sent to or received from a socket. The handle can be used to close an open socket.

Syntax
TYPE T_HSOCKET
STRUCT
handle : UDINT;
localAddr : ST SockAddr; (* Local address ¥*)
remoteAddr : ST SockAddr; (* Remote endpoint address *)
END_ STRUCT
END TYPE
Values
Name Type Description
handle UDINT Internal TwinCAT TCP/IP Connection Server socket handle.
localAddr ST_SockAddr Local socket address [P 57].
remoteAddr ST_SockAddr Remote socket address [P 57].

The following sockets can be opened and closed via the TwinCAT TCP/IP Connection Server: Listener
socket, Remote Client socket or Local Client socket. Depending on which of these sockets was opened by
the TwinCAT TCP/IP Connection Server, suitable address information is entered into the localAddr and
remoteAddr variables.

Connection handle on the server side

» The function block FB Socketlisten [P 23] opens a listener socket and returns the connection handle of
the listener socket.

* The connection handle of the listener sockets is transferred to the function block FB_SocketAccept
[»_24]. FB_SocketAccept will then return the connection handles of the remote clients.

» The function block FB_SocketAccept returns a new connection handle for each connected remote
client.

* The connection handle is then transferred to the function blocks FB SocketSend [»_25] and/or
FB SocketReceive [P 27], in order to be able to exchange data with the remote clients.

» A connection handle of a remote client that is not desirable or no longer required is transferred to the
function block FB_SocketClose [P 21], which closes the remote client socket.

» Alistener socket connection handle that is no longer required is also transferred to the function block
FB_SocketClose, which closes the listener socket.

Connection handle on the client side

* The function block FB SocketConnect [P_20] returns the connection handle of a local client socket.

* The connection handle is then transferred to the function blocks FB SocketSend [P 25] and
FB SocketReceive [P 27], in order to be able to exchange data with a remote server.

* The same connection handle is then transferred to the function block FB_SocketClose [» 21], in order to
close a connection that is no longer required.

The function block FB SocketCloseAll [P 22] can be used to close all connection handles (sockets) that were
opened by a PLC runtime system. This means that, if FB_SocketCloseAll is called in one of the tasks of the
first runtime systems (port 801), all sockets that were opened in the first runtime system are closed.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Teplp (communication)

TF6310 Version: 1.4.3 59

PLC AP BECKHOFF

5.4 Global constants

541 Global Variables

Syntax

VAR GLOBAL CONSTANT
AMSPORT TCPIPSRV : UINT:=10201;
TCPADS IGR CONLIST : UDINT:=16#80000001;
TCPADS TGR CLOSEBYHDL : UDINT:=16#80000002;
TCPADS IGR SENDBYHDL : UDINT:=16#80000003;
TCPADS_ IGR PEERBYHDL : UDINT:=16#80000004;
TCPADS_IGR RECVBYHDL : UDINT:=16#80000005;

TCPADS TGR RECVFROMBYHDL 16#80000006;
TCPADS IGR SENDTOBYHDL 8 16#80000007;
TCPADS_IGR MULTICAST ADDBYHDL : UDINT:=16#80000008;
TCPADS_IGR MULTICAST DROPBYHDL: UDINT:=16#80000009;

TCPADSCONLST IOF CONNECT : UDINT:=1;
TCPADSCONLST IOF LISTEN : UDINT:=2;
TCPADSCONLST IOF CLOSEALL : UDINT:=3;
TCPADSCONLST IOF ACCEPT : UDINT:=4;
TCPADSCONLST IOF UDPBIND : UDINT:=5;

TLS_CONNECT FLAG_INSECURE :=16#00000001;
TLS_CONNECT FLAG_IGNORE_CN 3 16#00000002;
TLS LISTEN FLAG REQUIRES CERT : DWORD:=16#00000001;

TCPADS_NULL_HSOCKET : T _HSOCKET:=(handle:=0, remoteAddr:=(nPort:=0, sAddr:='"), localA
ddr:=(nPort:=0, sAddr:='"));

LISTEN MODE CLOSEALL : DWORD:=16#00000001;

LISTEN_MODE_USEOPENED : DWORD:=16#00000002;

CONNECT MODE ENABLEDBG : DWORD:=16#80000000;

DEFAULT TLSLISTENFLAGS : ST TlsListenFlags:=(bNoClientCert:=FALSE);

DEFAULT TLSCONNECTFLAGS : ST TlsConnectFlags:=(bNoServerCertCheck:=FALSE, bIgnoreCnMismatc
h:=FALSE) ;
END VAR

60 Version: 1.4.3 TF6310

BECKHOFF PLC API

Parameter

Name Type Description
AMSPORT_TCPIPSRV UINT
TCPADS IGR_CONLIST UDINT
TCPADS IGR_CLOSEBYHDL UDINT
TCPADS_IGR_SENDBYHDL UDINT
TCPADS_IGR_PEERBYHDL UDINT
TCPADS_IGR_RECVBYHDL UDINT
TCPADS IGR_RECVFROMBYHDL |UDINT
TCPADS_IGR_SENDTOBYHDL UDINT
TCPADS_IGR_MULTICAST_ADDBY |UDINT
HDL

TCPADS_IGR_MULTICAST_DROPB |UDINT
YHDL

TCPADSCONLST_IOF_CONNECT |UDINT
TCPADSCONLST_IOF_LISTEN UDINT

TCPADSCONLST_IOF_CLOSEALL |UDINT

TCPADSCONLST_IOF_ACCEPT UDINT

TCPADSCONLST_IOF_UDPBIND UDINT

TLS CONNECT_FLAG_INSECURE |DWORD Certificate of the server is not checked.
TLS_CONNECT_FLAG_IGNORE_CN |DWORD Inconsistency in the common name of the
server is ignored.
TLS_LISTEN_FLAG_REQUIRES_CE DWORD Configuration of the client certificate is
RT required and assumed.
TCPADS_NULL_HSOCKET T _HSOCKET Empty (not initialized) socket.
LISTEN _MODE_CLOSEALL DWORD FORCED close of all previously opened
sockets.
LISTEN_MODE_USEOPENED DWORD Attempt to use a listener socket that is
already open.
CONNECT_MODE_ENABLEDBG DWORD Enables/disables debugging messages.
DEFAULT _TLSLISTENFLAGS ST TlsListenFlags Default (optional) TLS server connection
» 58] settings.
DEFAULT_TLSCONNECTFLAGS ST TlsConnectFlags |Default (optional) TLS client connection
571 settings.

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Teplp (communication)

5.4.2 Library version

All libraries have a specific version. This version is shown in the PLC library repository too.
A global constant contains the library version information:

Global_Version

VAR GLOBAL CONSTANT
stLibVersion Tc2 TcpIp : ST LibVersion;
END_VAR

TF6310 Version: 1.4.3 61

PLC AP BECKHOFF

To compare the existing version to a required version the function F_CmpLibVersion (defined in Tc2_System
library) is offered.

® TwinCAT 2 compatibility

1 All other possibilities known from TwinCAT2 libraries to query a library version are obsolete!

Requirements

Development environment Target system type PLC libraries to include (cate-
gory group)

TwinCAT v3.1.0 PC, or CX (x86, X64, ARM) Tc2_Teplp (communication)

5.4.3 Parameter list

Param

Name Type |Value Description

TCPADS_MAXUDP_BUFFSIZE |UDINT |16#2000 Max. byte length of the internal UDP send/receive

buffer (8192 bytes).

TCPADS _TLS _HOSTNAME_SI |UDINT |255 Max. length of the host name string.

ZE

TCPADS TLS CERTIFICATE_ |UDINT |255 Max. length of the certificate path string.

PATH_SIZE

TCPADS TLS _KEY_PASSWO |UDINT |255 Max. length of the certificate password path string.

RD_SIZE

TCPADS_TLS_PSK_IDENTITY |UDINT |255 Max. length of the PSK identity string.

_SIZE

TCPADS_TLS MAX_PSK_KEY |UDINT |128 Max. byte length of the PSK key.

_SIZE

Requirements

Development environment Target platform PLC libraries to be integrated
(category group)

TF6310 v3.3.15.0 or later PC or CX (x86, x64, ARM) Tc2_Tcplp (Communication)

TwinCAT v3.1.0

62 Version: 1.4.3 TF6310

BECKHOFF Samples

6 Samples

Sample code and configurations for this product can be obtained from the corresponding repository on

GitHub: https://github.com/Beckhoff/TF6310 Samples . There you have the option to clone the repository or
download a ZIP file containing the sample.

Go to file 4+ Code ~

B3 Clone @)

HTTPS GitHub CLI
https://github.com/Beckhoff/TFE318_Samples [f]

Use Git or checkout with SVN using the web URL
X1 Open with GitHub Desktop

() Download ZIP

6.1 TCP

6.1.1 Sample01: "Echo” client/server (base blocks)

6.1.1.1 Overview

The following example shows an implementation of an "echo" client/server. The client sends a test string to
the server at certain intervals (e.g. every second). The remote server then immediately resends the same
string to the client.

In this sample, the client is implemented in the PLC and as a .NET application written in C#. The PLC client
can create several instances of the communication, simulating several TCP connections at once. The .NET
sample client only establishes one concurrent connection. The server is able to communicate with several
clients.

In addition, several instances of the server may be created. Each server instance is then addressed via a
different port number which can be used by the client to connect to a specific server instance. The server
implementation is more difficult if the server has to communicate with more than one client.

Feel free to use and customize this sample to your needs.

System requirements
« TwinCAT 3 Build 3093 or higher
« TwinCAT 3 Function TF6310 TCP/IP

 If two computers are used to execute the sample (one client and one server), the Function TF6310
needs to be installed on both computers

+ If one computer is used to execute the sample, e.g. client and server running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks

TF6310 Version: 1.4.3 63

https://github.com/Beckhoff/TF6310_Samples

Samples BEGKHOFF

* To run the .NET sample client, only .NET Framework 4.0 is needed

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample01

https://github.com/Beckhoff/TF6310 Samples/tree/master/C%23/SampleClient

Project description

The following links provide documentation for the three components. Additionally, an own article explains
how to start the PLC samples with step-by-step instructions.

* Integration in TwinCAT and Test [P 65] (Starting the PLC samples)

« PLC Client [» 68] (PLC client documentation: FB LocalClient function block [P 68])
» PLC Server [P 72] (PLC serve documentation: FB LocalServer function block [P 72])
» .NET client [» 78] (.NET client documentation: .NET sample client [»_78])

Auxiliary functions in the PLC sample projects

In the example projects, several functions, constants and function blocks are used, which are briefly
described below:
LogError function

FUNCTION LogError : DINT

LOGERROR

—imsg : STRIMG(E0 LogError: DIMNT—
—{nErrld : DWORD

The function writes a message with the error code into the log book of the operating system (Event Viewer).
The global variable bLogDebugMessages must first be set to TRUE.

LogMessage function

FUNCTION LogMessage : DINT

LOGMESSAGE

—msyg ; STRIMG{S0) Loghlessage : DINT—
—thSocket: T_HSOCKET

The function writes a message into the log book of the operating system (Event Viewer) if a new socket was
opened or closed. The global variable bLogDebugMessages must first be set to TRUE.

SCODE_CODE function

FUNCTION SCODE_CODE : DWORD

SCODE_CODE

—5¢ - UDINT SCODE_CODE : DWORD—

The function masks the lower 16 bits of a Win32 error code returns them.

64 Version: 1.4.3 TF6310

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample01
https://github.com/Beckhoff/TF6310_Samples/tree/master/C%23/SampleClient

BEGKHOFF Samples

Global variables

Name Default value Description

bLogDebugMessages TRUE Activates/deactivates writing of messages into the
log book of the operating system

MAX_CLIENT_CONNECTIONS 5 Max. number of remote clients, that can connect
to the server at the same time.

MAX_PLCPRJ_RXBUFFER_SIZE 1000 Max. length of the internal receive buffer

PLCPRJ_RECONNECT_TIME T#3s Once this time has elapsed, the local client will

attempt to re-establish the connection with the
remote server

PLCPRJ_SEND_CYCLE_TIME T#1s The test string is sent cyclically at these intervals
from the local client to the remote server

PLCPRJ_RECEIVE_POLLING TI |T#1s The client reads (polls) data from the server using

ME this cycle

PLCPRJ_RECEIVE_TIMEOUT T#10s After this time has elapsed, the local client aborts

the reception if no data bytes could be received
during this time

PLCPRJ_ERROR_RECEIVE_BUF |16#8101 Sample project error code: Too many characters
FER_OVERFLOW without zero termination were received
PLCPRJ_ERROR_RECEIVE_TIM [16#8102 Sample project error code: No new data could be
EOUT received within the timeout time

(PLCPRJ_RECEIVE_TIMEOUT)

6.1.1.2 Integration in TwWinCAT and Test

The following section describes how to prepare and start the PLC server and client. The PLC samples are
delivered as TwinCAT 3 PLC project files. To import a PLC project into TwinCAT XAE, first create a new
TwinCAT 3 Solution. Then select the command Add Existing Item in the context menu of the PLC node and
select the downloaded sampile file (Plc 3.x Project archive (*.tpzip) as file type) in the dialog that opens. After
confirming the dialog, the PLC project is added to the solution.

Solution Explorer

‘g Solution "TwinCAT Project22' (1 project)
4 o] TwinCAT Project22

- | SYSTEM
MOTION
PLC
2 Add Mew tem... Ctrl+Shift+A 3| SAFETY
it Add Existing Iterm... Shift+Alt+A C++
Add Project from Scurce Control... Vo
5 Paste Ctrl+V

Paste with Links

#
w

Import PLCopenXML...

PLC server sample

Create a new TwinCAT 3 solution in TwinCAT XAE and import the TCP/IP server project. Select a target
system. Make sure that you have created licenses for TF6310 and that the Function is also installed on the
selected target system. Leave the TwinCAT 3 solution open.

TF6310 Version: 1.4.3 65

Samples BEGKHOFF

PROGRAM MAIN

VAR
fbServer : FB LocalServer := (sLocalHost := '127.0.0.1"' (*own IP address!
*), nLocalPort := 200);
bEnableServer : BOOL := TRUE;
fbSocketCloseAll : FB SocketCloseAll := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT);
bCloseAll : BOOL := TRUE;
END VAR

IF bCloseAll THEN (*On PLC reset or program download close all old connections ¥*)

bCloseAll := FALSE;

fbSocketCloseAll (bExecute:= TRUE) ;
ELSE

fbSocketCloseAll (bExecute:= FALSE) ;
END IF

IF NOT fbSocketCloseAll.bBusy THEN
fbServer (bEnable := bEnableServer);
END IF

PLC client sample

In the same TwinCAT 3 solution, import the TCP/IP client project as a second PLC project. Link this PLC
project to another task than the server sample. The server's IP address has to be adapted to your remote
system (initialization values of the sRemoteHost variables). In this case, the server is located on the same
machine, therefore enter 127.0.0.1. Activate the configuration, then login and start both PLC projects,
beginning with the server.

PROGRAM MAIN

VAR
fbClientl : FB _LocalClient := (sRemoteHost:= '127.0.0.1' (* IP address of remote server! *)
, nRemotePort:= 200);
fbClient2 : FB LocalClient := (sRemoteHost:= '127.0.0.1', nRemotePort:= 200);
fbClient3 : FB LocalClient := (sRemoteHost:= '127.0.0.1', nRemotePort:= 200);
fbClient4 : FB LocalClient := (sRemoteHost:= '127.0.0.1', nRemotePort:= 200);
fbClient5 : FB LocalClient := (sRemoteHost:= '127.0.0.1', nRemotePort:= 200);
bEnableClientl : BOOL := TRUE;
bEnableClient2 : BOOL := FALSE;
bEnableClient3 : BOOL := FALSE;
bEnableClient4 : BOOL := FALSE;
bEnableClient5 : BOOL := FALSE;
fbSocketCloseAll : FB SocketCloseAll := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT);
bCloseAll : BOOL := TRUE;
nCount : UDINT;
END_ VAR
IF bCloseAll THEN (*On PLC reset or program download close all old connections *)
bCloseAll := FALSE;
fbSocketCloseAll (bExecute:= TRUE);
ELSE
fbSocketCloseAll (bExecute:= FALSE);
END IF

IF NOT fbSocketCloseAll.bBusy THEN
nCount := nCount + 1;
fbClientl (bEnable :

))i
fbClient2 (bEnable

bEnableClientl, sToServer

CONCAT ('CLIENT1-', UDINT TO STRING(nCount)

bEnableClient2, sToServer CONCAT ('CLIENT2-', UDINT TO STRING(nCount)
))i
fbClient3 (bEnable
))i
fbClient4 (bEnable
fbClient5(bEnable

END IF

bEnableClient3, sToServer CONCAT ('CLIENT3-', UDINT TO_STRING(nCount)

bEnableClient4);
bEnableClient5);

Up to five client instances can be activated by setting the bEnableClientX variable. Each client sends a string
(default: "'TEST") to the server approximately every second. The server returns the same string to the client
(echo). For the test, a string with a counter value is generated automatically for the first three instances. The
first client is activated automatically when the program is started. Set the bEnableClient4 variable in the
client project to TRUE. The new client instance will then attempt to establish a connection with the server. If
successful, the "TEST' string is sent cyclically. Now open the fbClient4 instance of the FB_LocalClient
function block. Double-click to open the dialog for writing the sToString variable. Change the value of the
string variable, for example to 'Hello'.

66 Version: 1.4.3 TF6310

BECKHOFF

Samples

|| MAIN [Online]

TwinCAT_Project17.Tcplp_CLIENT.MAIN

T @ @@ @ @ @@ @ @ @ @@

Expression

+ & fhClientl
+ d@ fhClient2
+ d@ fbClient3
= & fhcClient4
%% sRemoteHost
%% nRemotePort
4 sToServer
%% bEnable
Fd@ bConnected
+ "@ hsocket
P& bBusy
Fé bErrar
Fdn nErrld
Fdn sFromserver

Type
FB_LaocalClient
FB_LocalClient
FB_LocalClient
FB_LocalClient
STRING(15)
UDINT
STRING(255)
BOOL

BOOL
T_HSOCKET
BOOL

BOOL

UDINT
STRING(255)

Value Prepared value
'127.0.0.1°

200

Test' ‘Hello World'

]
Test'

Close the dialog with OK. Write the new value into the PLC. Shortly afterwards, the value is send back by

the server can also be seen online.

TwinCAT_Project17.TcpIp_CLIENT.MAIN

Expression
+ @@ fbClientl
+ d@ fhClient2
+ d@ fbClient3
= & fhClients
*% sRemoteHost
%% nRemotePort
% sToServer
% hEnable
" bConnected
+ " hsocket
Fa# bBusy
P& bError
®a nErrld
T

sFromServer

Type
FE_LocalClient
FE_LocalClient
FE_LocalClient
FB_LaocalClient
STRING{15)
UDINT
STRIMG{255)
BOOL

BOOL
T_HSOCKET
BOOL

BOOL

UDINT
STRING(255)

Value Prepared value

'127.0.0.1
‘Hello Warld'
TRLUE

TRUE
FALSE

‘Hello Warld'

[=
m

T=
=
LN

ID

Now open the fbServer instance of the FB_LocalServer function block in the server project. Our string: 'Hello'

can be seen in the online data of the server.

TF6310

Version: 1.4.3

67

Samples BEGKHOFF

TwinCAT_Project17.TcpIp_SERVER.MAIN

Expression Type Value Prepared value
= & fbRemoteClient ARRAY [1.MAX_CLI...
+ & fbRemoteClient[1] FBE_RemoteClient
+ & fhRemoteClient[2] FB_RemoteClient
+ ¢ fbRemoteClient[3] FB_RemoteClient
= @& fbRemoteClient[4] FBE_RemoteClient
+ "% hlistener T_HSOCKET
4% hEnable BOOL TRUE
P baccepted BOOL FALSE
+ "# hSocket T HSOCKET
Fdn bBusy BOOL TRUE
P& bError BOOL FALSE
B nErrlD UDINT 0
P& sFromClient STRIMG(255) | ‘Hello Warld'
+ ¢ fbAccept FB_Socketfccept
6.1.1.3 PLC Client

6.1.1.3.1 FB_LocalClient

FB_LocalClignt
—sRemoteHost hConnected—
—nRemotePor hSockett—
—sToZerer bBusy—
—bEnakle bError—

nErld—
sFromSenser—

If the bEnable input is set, the system will keep trying to establish the connection to the remote server once
the PLCPRJ_RECONNECT_TIME has elapsed. The remote server is identified via the sRemoteHost IP
address and the nRemotePort IP port address. The data exchange with the server was encapsulated in a
separate function block (FB_ClientDataExcha [»_70]). Data exchange is always cyclic once
PLCPRJ_SEND_CYCLE_TIME has elapsed. The sToServer string variable is sent to the server, and the
string sent back by the server is returned at output sFormServer. Another implementation, in which the
remote server is addressed as required is also possible. In the event of an error, the existing connection is
closed, and a new connection is established.

Interface
FUNCTION BLOCK FB LocalClient
VAR INPUT
sRemoteHost : STRING(15) := '127.0.0.1'; (* IP adress of remote server *)
nRemotePort : UDINT := 0;
sToServer : T _MaxString:= 'TEST';
bEnable : BOOL;
END VAR
VAR _OUTPUT
bConnected : BOOL;
hSocket : T HSOCKET;
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
sFromServer 3 T_MaxString;
END VAR

68 Version: 1.4.3 TF6310

BEGKHOFF Samples

VAR
fbConnect : FB SocketConnect := (sSrvNetId := '');
fbClose : FB_SocketClose := (sSrvNetId := '', tTimeout := DEFAULT ADS TIMEOUT);
fbClientDataExcha : FB_ClientDataExcha;
fbConnectTON : TON := (PT := PLCPRJ_RECONNECT TIME)8
fbDataExchaTON : TON := (PT := PLCPRJ_SEND CYCLE TIME) ;
eStep : E_ClientSteps;
END VAR
Implementation

CASE eStep OF
CLIENT STATE IDLE:
IF bEnable XOR bConnected THEN
bBusy := TRUE;
bError := FALSE;
nErrid := 0;
sFromServer := '';
IF bEnable THEN
fbConnectTON (IN := FALSE);
eStep := CLIENT STATE CONNECT START;
ELSE
eStep := CLIENT_ STATE CLOSE START;
END IF
ELSIF bConnected THEN
fbDataExchaTON(IN := FALSE);
eStep := CLIENT STATE DATAEXCHA START;
ELSE
bBusy := FALSE;
END IF

CLIENT STATE CONNECT START:
fbConnectTON(IN := TRUE, PT := PLCPRJ RECONNECT TIME) ;
IF fbConnectTON.Q THEN

fbConnectTON (IN FALSE) ;

fbConnect (bExecute := FALSE);
fbConnect (sRemoteHost := sRemoteHost,
nRemotePort := nRemotePort,
bExecute := TRUE) ;

eStep := CLIENT STATE CONNECT WAIT;

END IF

CLIENT STATE CONNECT WAIT:
fbConnect (bExecute := FALSE);
IF NOT fbConnect.bBusy THEN
IF NOT fbConnect.bError THEN

bConnected := TRUE;
hSocket := fbConnect.hSocket;
eStep := CLIENT STATE IDLE;
LogMessage ('LOCAL client CONNECTED!', hSocket);
ELSE
LogError ('FB_SocketConnect', fbConnect.nErrId);
nErrId := fbConnect.nErrId;
eStep := CLIENT STATE ERROR;
END IF
END IF

CLIENT STATE DATAEXCHA START:

fbDataExchaTON(IN := TRUE, PT := PLCPRJ_SEND CYCLE TIME)
IF fbDataExchaTON.Q THEN
fbDataExchaTON(IN := FALSE);
fbClientDataExcha (bExecute := FALSE);
fbClientDataExcha (hSocket := hSocket,
sToServer := sToServer,
bExecute := TRUE);
eStep := CLIENT STATE DATAEXCHA WAIT;
END IF

CLIENT STATE DATAEXCHA WAIT:
fbClientDataExcha (bExecute := FALSE);
IF NOT fbClientDataExcha.bBusy THEN
IF NOT fbClientDataExcha.bError THEN
sFromServer := fbClientDataExcha.sFromServer;
eStep := CLIENT STATE IDLE;
ELSE
(* possible errors are logged inside of fbClientDataExcha function block *)
nErrId := fbClientDataExcha.nErrId;
eStep :=CLIENT_ STATE ERROR;

TF6310 Version: 1.4.3 69

Samples BEGKHOFF

END IF
END IF

CLIENT STATE CLOSE START:

fbClose (bExecute := FALSE);

fbClose (hSocket:= hSocket,
bExecute:= TRUE) ;

eStep := CLIENT STATE CLOSE WAIT;

CLIENT STATE CLOSE WAIT:
fbClose (bExecute := FALSE);
IF NOT fbClose.bBusy THEN
LogMessage ('LOCAL client CLOSED!', hSocket);
bConnected := FALSE;
MEMSET (ADR (hSocket), 0, SIZEOF (hSocket)):;
IF fbClose.bError THEN
LogError ('FB SocketClose (local client)', fbClose.nErrId);

nErrId := fbClose.nErrId;

eStep := CLIENT STATE ERROR;
ELSE

bBusy := FALSE;

bError := FALSE;

nErrId := 0;

eStep := CLIENT STATE IDLE;

END IF
END IF

CLIENT STATE ERROR: (* Error step *)

bError := TRUE;
IF bConnected THEN
eStep := CLIENT STATE CLOSE_START;
ELSE
bBusy := FALSE;
eStep := CLIENT STATE IDLE;
END IF
END_ CASE

6.1.1.3.2 FB_ClientDataExcha

FBE_ClientDataExcha
—h=ocket bBusy—
s ToSersear bError—
—bExecute nErrd—

sFromServer—

In the event of an rising edge at the bExecute input, a zero-terminated string is sent to the remote server,
and a string returned by the remote server is read. The function block will try reading the data until zero
termination was detected in the string received. Reception is aborted in the event of an error, and if no new
data were received within the PLCPRJ_RECEIVE_TIMEOUT timeout time. Data are attempted to be read
again after a certain delay time, if no new data could be read during the last read attempt. This reduces the
system load.

Interface
FUNCTION BLOCK FB ClientDataExcha
VAR _INPUT
hSocket : T _HSOCKET;
sToServer : T MaxString;
bExecute : BOOL;
END_VAR
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
sFromServer : T MaxString;
END VAR
VAR
fbSocketSend : FB SocketSend := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT) ;
fbSocketReceive : FB_SocketReceive := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT);

fbReceiveTON : TON;
fbDisconnectTON : TON;
RisingEdge : R TRIG;

70 Version: 1.4.3 TF6310

BEGKHOFF Samples

eStep : E DataExchaSteps;

cbReceived, startPos, endPos, idx : UDINT;

cbFrame : UDINT;

rxBuffer 8 ARRAY[O..MAXiPLCPRJiRXBUFFERisIZE] OF BYTE;
END VAR
Implementation
RisingEdge (CLK := bExecute);

CASE eStep OF
DATAEXCHA STATE IDLE:
IF RisingEdge.Q THEN

bBusy := TRUE;

bError := FALSE;

nErrid := 0;

cbReceived := 0;

fbReceiveTON(IN := FALSE, PT := T#0s); (* don't wait, read the first answer data immed
iately *)

fbDisconnectTON(IN := FALSE, PT := T#0s); (* disable timeout check first *)

eStep := DATAEXCHA STATE SEND_START;

END IF

DATAEXCHA STATE SEND_ START:

fbSocketSend (bExecute := FALSE);

fbSocketSend(hSocket := hSocket,
pSrc := ADR(sToServer),
cbLen := LEN(sToServer) + 1, (* string length inclusive zero delimiter *)
bExecute:= TRUE) ;

eStep := DATAEXCHA STATE SEND WAIT;

DATAEXCHA STATE SEND WAIT:
fbSocketSend (bExecute := FALSE);
IF NOT fbSocketSend.bBusy THEN
IF NOT fbSocketSend.bError THEN

eStep := DATAEXCHA STATE RECEIVE START;
ELSE
LogError ('FB SocketSend (local client)', fbSocketSend.nErrId);
nErrId := fbSocketSend.nErrId;
eStep := DATAEXCHA STATE ERROR;
END IF

END IF

DATAEXCHA STATE RECEIVE START:
fbDisconnectTON() ;
fbReceiveTON(IN := TRUE);
IF fbReceiveTON.Q THEN
fbReceiveTON(IN := FALSE);
fbSocketReceive (bExecute := FALSE);
fbSocketReceive (hSocket:= hSocket,
pDest:= ADR(rxBuffer) + cbReceived,
cbLen:= SIZEOF(rxBuffer) - cbReceived,
bExecute:= TRUE) ;
eStep := DATAEXCHA STATE RECEIVE WAIT;
END IF

DATAEXCHA STATE RECEIVE WAIT:
fbSocketReceive (bExecute := FALSE);
IF NOT fbSocketReceive.bBusy THEN
IF NOT fbSocketReceive.bError THEN
IF (fbSocketReceive.nRecBytes > 0) THEN(* bytes received *)
startPos := cbReceived; (* rxBuffer array index of first data byte *)
endPos := cbReceived + fbSocketReceive.nRecBytes - 1;
(* rxBuffer array index of last data byte *)
cbReceived := cbReceived + fbSocketReceive.nRecBytes;
(* calculate the number of received data bytes *)
cbFrame := 0; (* reset frame length *)
IF cbReceived < SIZEOF(sFromServer) THEN(* no overflow *)
fbReceiveTON (PT := T#0s); (* bytes received => increase the read (polling)
speed *)
fbDisconnectTON(IN := FALSE); (* bytes received => disable timeout check *)
(* search for string end delimiter *)
FOR idx := startPos TO endPos BY 1 DO
IF rxBuffer[idx] = 0 THEN(* string end delimiter found *)
cbFrame := idx + 1;
(* calculate the length of the received string (inclusive the end delimiter) *)
MEMCPY (ADR(sFromServer), ADR(rxBuffer), cbFrame);
(* copy the received string to the output variable (inclusive the end delimiter) *)
MEMMOVE (ADR(rxBuffer), ADR(rxBuffer[cbFrame]), cbReceived -
cbFrame); (* move the reamaining data bytes *)

TF6310 Version: 1.4.3 71

Samples BEGKHOFF

cbReceived := cbReceived - cbFrame;
(* recalculate the remaining data byte length *)
bBusy := FALSE;

eStep := DATAEXCHA STATE IDLE;
EXIT;
END IF

END FOR
ELSE (* there is no more free read buffer space => the answer string should be te
rminated *)

LogError ('FB SocketReceive (local client)', PLCPRJ _ERROR RECEIVE BUFFER OVE

REFLOW) ;
nErrId := PLCPRJ ERROR RECEIVE BUFFER OVERFLOW; (* buffer overflow !¥*)
eStep := DATAEXCHA STATE ERROR;
END IF
ELSE (* no bytes received *)
fbReceiveTON (PT := PLCPRJ_RECEIVE POLLING_TIME) e
(* no bytes received => decrease the read (polling) speed *)
fbDisconnectTON(IN := TRUE, PT := PLCPRJ RECEIVE TIMEOUT) ;

(* no bytes received => enable timeout check*)
IF fbDisconnectTON.Q THEN (* timeout error*)

fbDisconnectTON(IN := FALSE);

LogError ('FB SocketReceive (local client)', PLCPRJ ERROR RECEIVE TIMEOUT);
nErrID := PLCPRJ ERROR RECEIVE TIMEOUT;
eStep := DATAEXCHA STATE ERROR;

ELSE (* repeat reading *)
eStep := DATAEXCHA STATE RECEIVE_ START; (* repeat reading *)

END IF

END IF

ELSE (* receive error *)
LogError ('FB SocketReceive (local client)', fbSocketReceive.nErrId);

nErrId := fbSocketReceive.nErrId;
eStep := DATAEXCHA STATE ERROR;
END IF
END IF

DATAEXCHA STATE ERROR: (* error step *)
bBusy := FALSE;
bError := TRUE;
cbReceived := 0;
eStep := DATAEXCHA STATE IDLE;
END_CASE

6.1.1.4 PLC Server

6.1.1.4.1 FB_LocalServer

FBE_LocalSerser
—sLocalHost blistening—
—nLocalFor hListener—
—hEnahkle nAcceptedClients—

bBusyi—
bError—
nErd—

The server must first be allocated a unique sLocalHost IP address and an nLocaPort IP port number. If the
bEnable input is set, the local server will repeatedly try to open the listener socket once the
PLCPRJ_RECONNECT_TIME has elapsed. The listener socket can usually be opened at the first attempt, if
the TwinCAT TCP/IP Connection Server resides on the local PC. The functionality of a remote client was
encapsulated in the function block FB_RemoteClient [»_74]. The remote client instances are activated once
the listener socket was opened successfully. Each instance of the FB_RemoteClient corresponds to a
remote client, with which the local server can communicate simultaneously. The maximum number of remote
clients communicating with the server can be modified via the value of the MAX_CLIENT_CONNECTIONS
constant. In the event of an error, first all remote client connections are closed, followed by the listener
sockets. The nAcceptedClients output provides information about the current number of connected clients.

72 Version: 1.4.3 TF6310

BECKHOFF

Interface
FUNCTION_BLOCK FB_LocalServer
VAR INPUT
sLocalHost : STRING(15) := '127.0.0.1'; (* own IP address! *)
nLocalPort : UDINT := 0;
bEnable : BOOL;
END VAR
VAR _OUTPUT
bListening : BOOL;
hListener : T_HSOCKET;
nAcceptedClients : UDINT;
bBusy : BOOL;
bError : BOOL;
nErrId : UDINT;
END VAR
VAR
fbListen : FB SocketlListen := (sSrvNetID := '', tTimeout := DEFAULT ADS_ TIMEOUT);
fbClose : FB_SocketClose := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT);
fbConnectTON : TON := (PT := PLCPRJ RECONNECT TIME) ;
eStep : E_ServerSteps;
fbRemoteClient : ARRAY[1..MAX CLIENT CONNECTIONS] OF FB RemoteClient;
i : UDINT;
END VAR
Implementation

CASE eStep OF

SERVER STATE IDLE:
IF bEnable XOR bListening THEN
bBusy := TRUE;
bError := FALSE;
nErrId := 0;
IF bEnable THEN
fbConnectTON(IN := FALSE);
eStep := SERVER STATE LISTENER OPEN START;
ELSE
eStep := SERVER STATE REMOTE CLIENTS CLOSE;
END IF
ELSIF bListening THEN
eStep := SERVER STATE REMOTE CLIENTS COMM;
END IF

SERVER STATE LISTENER OPEN START:
fbConnectTON(IN := TRUE, PT := PLCPRJ RECONNECT TIME) ;
IF fbConnectTON.Q THEN
fbConnectTON(IN := FALSE);
fbListen (bExecute := FALSE);
fbListen (sLocalHost:= sLocalHost,
nLocalPort:= nLocalPort,
bExecute := TRUE);
eStep := SERVER STATE LISTENER OPEN WAIT;
END IF

SERVER STATE LISTENER OPEN WAIT:
fbListen (bExecute := FALSE);
IF NOT fbListen.bBusy THEN
IF NOT fbListen.bError THEN

bListening := TRUE;
hListener := fblListen.hlListener;
eStep = SERVER STATE IDLE;
LogMessage ('LISTENER socket OPENED!', hListener);
ELSE
LogError ('FB SocketListen', fblListen.nErrId);
nErrId := fbListen.nErrId;
eStep := SERVER STATE ERROR;
END IF
END IF

SERVER STATE REMOTE CLIENTS COMM:

eStep := SERVER STATE IDLE;
nAcceptedClients := 0;
FOR i:= 1 TO MAX CLIENT CONNECTIONS DO

fbRemoteClient[i] (hListener := hListener, bEnable := TRUE);

IF NOT fbRemoteClient[i].bBusy AND fbRemoteClient[i].bError THEN

eturned error!¥*)
eStep := SERVER STATE REMOTE CLIENTS CLOSE;
EXIT;

(*FB_SocketAccept r

TF6310 Version: 1.4.3

Samples BEGKHOFF

END IF
(* count the number of connected remote clients *)
IF fbRemoteClient[i].bAccepted THEN
nAcceptedClients := nAcceptedClients + 1;
END IF
END_FOR

SERVER STATE REMOTE CLIENTS CLOSE:

nAcceptedClients := 0;
eStep := SERVER STATE LISTENER CLOSE START; (* close listener socket too *)
FOR i:= 1 TO MAX CLIENT CONNECTIONS DO
fbRemoteClient[i] (bEnable := FALSE); (* close all remote client (accepted) sockets *)

(* check if all remote client sockets are closed *)
IF fbRemoteClient[1].bAccepted THEN

eStep := SERVER STATE REMOTE CLIENTS CLOSE; (* stay here and close all remote client
s first *)
nAcceptedClients := nAcceptedClients + 1;
END IF
END_FOR

SERVER STATE LISTENER CLOSE START:

fbClose (bExecute := FALSE);

fbClose (hSocket := hlListener,
bExecute:= TRUE) ;

eStep := SERVER STATE LISTENER CLOSE WAIT;

SERVER_STATE LISTENER CLOSE WAIT:

fbClose (bExecute := FALSE);

IF NOT fbClose.bBusy THEN
LogMessage ('LISTENER socket CLOSED!', hListener);
bListening := FALSE;
MEMSET (ADR (hListener), 0, SIZEOF (hListener));
IF fbClose.bError THEN

LogError ('FB SocketClose (listener)', fbClose.nErrId);

nErrId := fbClose.nErrId;

eStep := SERVER STATE ERROR;
ELSE

bBusy := FALSE;

bError := FALSE;

nErrId := 0;

eStep := SERVER STATE IDLE;
END IF

END IF

SERVER STATE ERROR:

bError := TRUE;
IF bListening THEN
eStep := SERVER STATE REMOTE CLIENTS CLOSE;
ELSE
bBusy := FALSE;
eStep := SERVER STATE IDLE;
END IF
END CASE

6.1.1.4.2 FB_RemoteClient

FE_FemaoteClient
hListener bAccepted—
kEnakle hSocket—

bBusy—
bError—
nErlD—
sFromClient—

If the bEnable input is set, an attempt is made to accept the connection request of a remote client, once the
PLCPRJ_ACCEPT_POOLING_TIME has elapsed. The data exchange with the remote client was
encapsulated in a separate function block (FB_ServerDataExcha [P_76]). Once the connection was
established successfully, the instance is activated via the FB_ServerDataExcha function block. In the event
of an error, the accepted connection is closed, and a new connection is established.

74 Version: 1.4.3 TF6310

BEGKHOFF Samples

Interface
FUNCTION BLOCK FB RemoteClient
VAR INPUT
hListener : T _HSOCKET;
bEnable : BOOL;
END VAR
VAR OUTPUT
bAccepted : BOOL;
hSocket : T _HSOCKET;
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;
sFromClient : T _MaxString;
END VAR
VAR
fbAccept : FB_SocketAccept := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT) ;
fbClose : FB_SocketClose := (sSrvNetID := '', tTimeout := DEFAULT ADS TIMEOUT);
fbServerDataExcha : FB ServerDataExcha;
fbAcceptTON : TON := (PT := PLCPRJ ACCEPT POLLING TIME) ;
eStep : E ClientSteps;
END VAR
Implementation

CASE eStep OF

CLIENT STATE IDLE:
IF bEnable XOR bAccepted THEN
bBusy := TRUE;

bError := FALSE;
nErrId := 0;
sFromClient := '';
IF bEnable THEN
fbAcceptTON(IN := FALSE);
eStep := CLIENT STATE CONNECT START;
ELSE
eStep := CLIENT STATE CLOSE_ START;
END IF
ELSIF bAccepted THEN
eStep := CLIENT STATE DATAEXCHA START;
ELSE
bBusy := FALSE;
END IF

CLIENT STATE CONNECT START:

fbAcceptTON(IN := TRUE, PT := PLCPRJ_ACCEPT_ POLLING TIME) ;
IF fbAcceptTON.Q THEN

fbAcceptTON(IN := FALSE);

fbAccept (bExecute := FALSE);

fbAccept (hListener := hListener,

bExecute:= TRUE) ;

eStep := CLIENT STATE CONNECT WAIT;

END IF

CLIENT STATE CONNECT WAIT:
fbAccept (bExecute := FALSE);
IF NOT fbAccept.bBusy THEN
IF NOT fbAccept.bError THEN
IF fbAccept.bAccepted THEN

bAccepted := TRUE;
hSocket := fbAccept.hSocket;
LogMessage ('REMOTE client ACCEPTED!', hSocket);
END IF
eStep := CLIENT STATE IDLE;
ELSE
LogError ('FB_SocketAccept', fbAccept.nErrlId);
nErrId := fbAccept.nErrId;
eStep := CLIENT STATE ERROR;
END IF
END IF

CLIENT STATE DATAEXCHA START:

fbServerDataExcha (bExecute := FALSE);

fbServerDataExcha (hSocket := hSocket,
bExecute := TRUE);

eStep := CLIENT STATE DATAEXCHA WAIT;

CLIENT STATE DATAEXCHA WAIT:

TF6310 Version: 1.4.3 75

Samples BEGKHOFF

fbServerDataExcha (bExecute := FALSE, sFromClient=>sFromClient);
IF NOT fbServerDataExcha.bBusy THEN
IF NOT fbServerDataExcha.bError THEN

eStep := CLIENT STATE IDLE;
ELSE
(* possible errors are logged inside of fbServerDataExcha function block ¥*)
nErrId := fbServerDataExcha.nErrID;
eStep := CLIENT STATE ERROR;
END IF

END IF

CLIENT STATE CLOSE_ START:

fbClose (bExecute := FALSE);

fbClose (hSocket:= hSocket,
bExecute:= TRUE) ;

eStep := CLIENT STATE CLOSE WAIT;

CLIENT STATE CLOSE WAIT:

fbClose (bExecute := FALSE);
IF NOT fbClose.bBusy THEN
LogMessage ('REMOTE client CLOSED!', hSocket);
bAccepted := FALSE;
MEMSET (ADR(hSocket), 0, SIZEOF(hSocket));
IF fbClose.bError THEN

LogError ('FB SocketClose (remote client)', fbClose.nErrId);

nErrId := fbClose.nErrId;

eStep := CLIENT STATE ERROR;
ELSE

bBusy := FALSE;

bError := FALSE;

nErrId := 0;

eStep := CLIENT_ STATE IDLE;
END IF

END IF

CLIENT STATE ERROR:

bError := TRUE;
IF bAccepted THEN

eStep := CLIENT STATE CLOSE_START;
ELSE

eStep := CLIENT STATE IDLE;

bBusy := FALSE;

END IF

END_CASE

6.1.1.4.3 FB_ServerDataExcha

FBE_SersmerDataExcha
—hSocket bBusy—
—hExecute bErrar—

hErID—
sFromClient—

In the event of an rising edge at the bExecute input, a zero-terminated string is read by the remote client and
returned to the remote client, if zero termination was detected. The function block will try reading the data
until zero termination was detected in the string received. Reception is aborted in the event of an error, and if
no new data were received within the PLCPRJ_RECEIVE_TIMEOUT timeout time. Data are attempted to be
read again after a certain delay time, if no new data could be read during the last read attempt. This reduces
the system load.

Interface
FUNCTION BLOCK FB ServerDataExcha
VAR INPUT
hSocket : T HSOCKET;
bExecute : BOOL;
END VAR
VAR OUTPUT
bBusy : BOOL;
bError : BOOL;
nErrID : UDINT;

sFromClient : T MaxString;

76 Version: 1.4.3 TF6310

BECKHOFF Samples
END VAR
VAR
fbSocketReceive FB SocketReceive := (sSrvNetId := '', tTimeout := DEFAULT ADS TIMEOUT) ;
fbSocketSend FB SocketSend := (sSrvNetId := '', tTimeout := DEFAULT ADS TIMEOUT);
eStep E DataExchaSteps;
RisingEdge R_TRIG;
fbReceiveTON TON;
fbDisconnectTON TON;
cbReceived, startPos, endPos, idx UDINT;
cbFrame UDINT;
rxBuffer ARRAY[0..MAX PLCPRJ RXBUFFER SIZE] OF BYTE;
END VAR
Implementation

RisingEdge (CLK :=
CASE eStep OF

bExecute);

DATAEXCHA STATE IDLE:
IF RisingEdge.Q THEN

bBusy := TRUE;

bError := FALSE;

nErrId := 0;

fbDisconnectTON(IN := FALSE, PT := T#0s); (* disable timeout check first *)
fbReceiveTON(IN := FALSE, PT := T#0s); (* receive first request immediately *)

eStep :=
END IF

DATAEXCHA STATE RECEIVE START;

DATAEXCHA STATE RECEIVE START:
fbReceiveTON(IN := TRUE);
IF fbReceiveTON.Q THEN

(* Receive remote client data *)

fbReceiveTON(IN := FALSE);

fbSocketReceive (bExecute := FALSE);

fbSocketReceive (hSocket := hSocket,
pDest := ADR(rxBuffer) + cbReceived,
cbLen := SIZEOF(rxBuffer) - cbReceived,
bExecute := TRUE);

eStep := DATAEXCHA STATE RECEIVE WAIT;

END IF

DATAEXCHA STATE RECEIVE WATIT:
fbSocketReceive (bExecute := FALSE);
IF NOT fbSocketReceive.bBusy THEN
IF NOT fbSocketReceive.bError THEN

IF (fbSocketReceive.nRecBytes > 0) THEN(* bytes received *)
startPos := cbReceived; (* rxBuffer array index of first data byte *)
endPos := cbReceived + fbSocketReceive.nRecBytes - 1;
(* rxBuffer array index of last data byte *)
cbReceived := cbReceived + fbSocketReceive.nRecBytes;

(* calculate the number of received data bytes *)
cbFrame := 0; (* reset frame length *)

IF cbReceived < SIZEOF(sFromClient) THEN(* no overflow *)

fbReceiveTON(IN := FALSE, PT := T#0s);

(* bytes received => increase the r
ead (polling) speed *)
fbDisconnectTON(IN :=

(* bytes received => disable timeout check ¥*)

FALSE, PT := PLCPRJ RECEIVE TIMEOUT) ;

(* search for string end delimiter *)
FOR idx := startPos TO endPos BY 1 DO
IF rxBuffer[idx] = 0 THEN(* string end delimiter found *)
cbFrame := idx + 1;

(* calculate the length of the received string
MEMCPY (ADR(s

*)
cbFrame);

(inclusive the end delimiter)
FromClient), ADR(rxBuffer),

(* copy the received string to the output variable

(inclusive the end delimiter)

*)

MEMMOVE (ADR(rxBuffer), ADR(rxBuffer[cbFrame]), cbReceived -
cbFrame); (* move the reamaining data bytes *)
cbReceived := cbReceived - cbFrame;

(* recalculate the reamaining data byte length *)
eStep := DATAEXCHA STATE SEND_START;
EXIT;
END IF
END_FOR

ELSE (* there is no more free read buffer space => the answer string should be te
rminated *)

TF6310 Version: 1.4.3 77

Samples BEGKHOFF

LogError ('FB_SocketReceive (remote client)', PLCPRJ_ERROR RECEIVE BUFFER_OV

ERFLOW) ;
nErrId := PLCPRJ_ERROR RECEIVE BUFFER OVERFLOW; (* buffer overflow !¥)
eStep := DATAEXCHA STATE ERROR;
END IF
ELSE (* no bytes received *)
fbReceiveTON(IN := FALSE, PT := PLCPRJ RECEIVE POLLING TIME) ;
(* no bytes received => decrease the read (polling) speed ¥*)
fbDisconnectTON(IN := TRUE, PT := PLCPRJ RECEIVE TIMEOUT)8

(* no bytes received => enable timeout check*)
IF fbDisconnectTON.Q THEN (* timeout error*)
fbDisconnectTON(IN := FALSE);
LogError ('FB SocketReceive (remote client)', PLCPRJ ERROR RECEIVE TI
MEOUT) ;
nErrID := PLCPRJ_ERROR RECEIVE TIMEOUT;
eStep := DATAEXCHA STATE ERROR;
ELSE (* repeat reading ¥*)
eStep := DATAEXCHA STATE RECEIVE START; (* repeat reading *)
END IF
END IF
ELSE (* receive error *)
LogError ('FB SocketReceive (remote client)', fbSocketReceive.nErrId);
nErrId := fbSocketReceive.nErrId;
eStep := DATAEXCHA STATE ERROR;
END IF
END IF

DATAEXCHA STATE SEND START:

fbSocketSend (bExecute := FALSE);
fbSocketSend (hSocket := hSocket,
pSrc ADR(sFromClient),

cblLen := LEN(sFromClient) + 1,
(* string length inclusive the zero delimiter *)
bExecute:= TRUE) ;
eStep := DATAEXCHA STATE SEND WAIT;

DATAEXCHA STATE SEND WATIT:
fbSocketSend (bExecute := FALSE);
IF NOT fbSocketSend.bBusy THEN
IF NOT fbSocketSend.bError THEN

bBusy := FALSE;
eStep := DATAEXCHA STATE IDLE;
ELSE
LogError ('fbSocketSend (remote client)', fbSocketSend.nErrId);
nErrId := fbSocketSend.nErrId;
eStep := DATAEXCHA STATE ERROR;
END IF

END IF

DATAEXCHA STATE ERROR:

bBusy := FALSE;
bError := TRUE;
cbReceived := 0; (* reset old received data bytes *)
eStep := DATAEXCHA STATE IDLE;
END CASE
6.1.1.5 .NET client

This project example shows how a client for the PLC TCP/IP server can be realized by writing a .NET4.0
application using C#.

78 Version: 1.4.3 TF6310

BEGKHOFF Samples

il ™

Host: 127.0.0.1 Port: |200
Erable Dlisable
Send to host:
Received from host:

28.06.2012 12:32:05: Hello Word
28.06 2012 12:32:12: How are you doing?

Status messages:

28.06.2012 12:31:57: Connectection to host established!
28.06.2012 12:32:04: Message successfully sent!
28.06 2012 12:32:11: Message successfully sent!

This sample client makes use of the .NET libraries System.Net and System.Net.Sockets which enable a
programmer easy access to socket functionalities. By pressing the button Enable, the application attempts to
cyclically (depending on the value of TIMERTICK in [ms]) establish a connection with the server. If
successful, a string with a maximum length of 255 characters can be sent to the server via the "Send" button.
The server will then take this string and send it back to the client. On the server side, the connection is
closed automatically if the server was unable to receive new data from the client within a defined period, as
specified by PLCPRJ_RECEIVE_TIMEOUT in the server sample - by default 50 seconds.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Net;
using System.Net.Sockets;
/* HEH R R R R
* This sample TCP/IP client connects to a TCP/IP-Server, sends a message and waits for the
* response. It is being delivered together with our TCP-Sample, which implements an echo server
* in PLC.
R R R ~/
namespace TcpIpServer SampleClient
{
publicpartialclassForml : Form
{
/
SO 0
* Constants

TF6310 Version: 1.4.3 79

Samples BEGKHOFF

AR v/
privateconstint RCVBUFFERSIZE = 256; // buffer size for receive bufferprivateconststring DEFAULTIP =
WIL27 c0o0,1% g
privateconststring DEFAULTPORT = "200";
privateconstint TIMERTICK = 100;

/
SO 0

* Global variables

XORH RS RS R R S R E ~/
privatestaticbool isConnected; // signals whether socket connection is active or notprivatestaticSo
cket socket; // object used for socket connection to TCP/IP-
ServerprivatestaticIPEndPoint ipAddress; // contains IP address as entered in text fieldprivatestat
icbyte[] rcvBuffer; // receive buffer used for receiving response from TCP/IP-Serverpublic Forml ()

{

InitializeComponent () ;

}

privatevoid Forml Load(object sender, EventArgs e)

{
_rcvBuffer = newbyte[RCVBUFFERSIZE] ;

/
*OREAAR AR AR ARSAA AR FARFARSFARFFRFFARFFRSFARFFRFFA I AR AR FRF AR FRSFARFFRS A I AR FA A
* Prepare GUI
FORERE AR AR AR R~/
cmd_send.Enabled = false;
cmd_enable.Enabled = true;
cmd_disable.Enabled = false;
rtb_rcvMsg.Enabled = false;
rtb sendMsg.Enabled = false;
rtb_statMsg.Enabled = false;
txt host.Text = DEFAULTIP;
txt port.Text = DEFAULTPORT;

timerl.Enabled = false;
timerl.Interval = TIMERTICK;
_isConnected = false;

}

privatevoid cmd enable Click(object sender, EventArgs e)
{
/
X HEH AR AR A A A R R
* Parse IP address in text field, start background timer and prepare GUI
SO 0 i i A
try
{
_ipAddress = newIPEndPoint (IPAddress.Parse (txt host.Text), Convert.ToInt32(txt port.Text));
timerl.Enabled = true;
cmd_enable.Enabled = false;
cmd disable.Enabled = true;
rtb_sendMsg.Enabled = true;
cmd_send.Enabled = true;
txt_host.Enabled = false;
txt port.Enabled = false;
rtb sendMsg.Focus () ;
}
catch (Exception ex)

{

MessageBox.Show ("Could not parse entered IP address. Please check spelling and retry. " + ex

AR H A R R R

* Timer periodically checks for connection to TCP/IP-
Server and reestablishes if not connected

SO 0k A
privatevoid timerl Tick(object sender, EventArgs e)

{

if (! _isConnected)

connect () ;

}

privatevoid connect ()
{

/
*ORAH AR R R R A R R R A R R R R R R R R R R R

80 Version: 1.4.3 TF6310

BEGKHOFF Samples

* Connect to TCP/IP-Server using the IP address specified in the text field
XORR R R R R R R R

try
{
_socket = newSocket (AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.IP);
_socket.Connect (_ipAddress) ;
_isConnected = true;

if (_socket.Connected)

rtb statMsg.AppendText (DateTime.Now.ToString() + ": Connectection to host established!\n");
else

rtb statMsg.AppendText (DateTime.Now.ToString() + ": A connection to the host could not be e

stablished!\n");
}
catch (Exception ex)
{
MessageBox.Show ("An error occured while establishing a connection to the server: " + ex);
}
}

privatevoid cmd send Click(object sender, EventArgs e)
{
/
XORHAAR AR AR A R
* Read message from text field and prepare send buffer, which is a byte[] array. The last
* character in the buffer needs to be a termination character, so that the TCP/IP-
Server knows
* when the TCP stream ends. In this case, the termination character is '0'.
X fEHE AR AR AR A R R R R R R A R S </
ASCIIEncoding enc = newASCIIEncoding();
byte[] tempBuffer = enc.GetBytes(rtb sendMsg.Text);
byte[] sendBuffer = newbyte[tempBuffer.Length + 1];
for (int i = 0; i < tempBuffer.Length; i++)
sendBuffer[i] = tempBuffer[i];
sendBuffer|[tempBuffer.Length] = 0;

/
K ORHHH AR R R R R R R R
* Send buffer content via TCP/IP connection
* A HR AR AR A AR AR AR R A AR AR AR R A A AR AR AR R A AR R AR R R A AR R A AR A </
try
{
int send = socket.Send(sendBuffer);
if (send == 0)
thrownewException () ;
else
{
/
XORHAAR AR AR AR AR AR A AR A A A R R R

* As the TCP/IP-
Server returns a message, receive this message and store content in receive buffer.
* When message receive is complete, show the received message in text field.

oA R R R R R

rtb statMsg.AppendText (DateTime.Now.ToString() + ": Message successfully sent!\n");
IAsyncResult asynRes = socket.BeginReceive(rcvBuffer, 0, 256, SocketFlags.None, null, nul

if (asynRes.AsyncWaitHandle.WaitOne())
{
int res = socket.EndReceive (asynRes);
char[] resChars = newchar[res + 1];
Decoder d = Encoding.UTF8.GetDecoder () ;
int charLength = d.GetChars(rcvBuffer, 0, res, resChars, 0, true);
String result = newString (resChars) ;
rtb_rcvMsg.AppendText("\n" + DateTime.Now.ToString() + ": " + result);
rtb_sendMsg.Clear () ;
}
}
}
catch (Exception ex)
{
MessageBox.Show ("An error occured while sending the message: " + ex);
}
}

privatevoid cmd disable Click (object sender, EventArgs e)
{
/
*ORHH AR R R R R R R R R R R R R R R R R
* Disconnect from TCP/IP-Server, stop the timer and prepare GUI

TF6310 Version: 1.4.3 81

Samples BEGKHOFF

X fHHR AR AR A AR AR R A AR R AR R A AR A AR R AR R A AR R R A A R AR R A </
timerl.Enabled = false;

_socket.Disconnect (true);

if (! _socket.Connected)

{

_1sConnected = false;

cmd _disable.Enabled = false;

cmd_enable.Enabled = true;

txt_host.Enabled = true;

txt port.Enabled = true;

rtb_sendMsg.Enabled = false;

cmd_send.Enabled = false;

rtb_statMsg.AppendText (DateTime.Now.ToString() + ": Connectection to host closed!\n");
rtb rcvMsg.Clear();

rtb_statMsg.Clear();

6.1.2 Sample02: “Echo* client /server

This sample is based on the functionality offered by the former TcSocketHelper.Lib, which is now part of
Tc2_Tcplp library. It realizes a Client/Server PLC application based on the functionality provided by the
former SocketHelper library.

The client cyclically sends a test string (sToServer) to the remote server. The server returns the same string
unchanged to the client (sFromServer).

Solution Explorer

; Selution "TwinCAT Project22' (1 project)
4 3] TwinCAT Project22
>l SYSTEM
MOTION
PLC
Add New Item... Ctrl+Shift+A SAFETY
Add Existing Item... Shift+Alt+A C++
Yo

Add Project from Scurce Control...
5 Paste Ctrl+V
Paste with Links

B
b3

Import PLCopenXML...

System requirements
« TwinCAT 3 Build 3093 or higher
« TwinCAT 3 Function TF6310 TCP/IP

 If two computers are used to execute the sample (one client and one server), the Function TF6310
needs to be installed on both computers

+ If one computer is used to execute the sample, e.g. client and server running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks.

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample02

82 Version: 1.4.3 TF6310

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample02

BECKHOFF Samples

Project information

The default communication settings used in the above samples are as follows:
* PLC client application: Port and IP address of the remote server: 200, '127.0.0.1'
» PLC server application: Port and IP address of the local server: 200, '127.0.0.1"

To test the client and server application on two different PCs, you have to adjust the port and the IP address
accordingly.

However, you can also test the client and server samples with the default values on a single computer by
loading the client application into the first PLC runtime system and the server application into the second
PLC runtime system.

The behavior of the PLC project sample is determined by the following global variables/constants.

Constant Value Description

PLCPRJ_MAX_CONNECTIONS |5 Max. number of server — client connections. A server
can establish connections to more than one client. A
client can establish a connection to only one server at a
time.

PLCPRJ_SERVER RESPONSE_ |T#10s Max. delay time (timeout time) after which a server

TIMEOUT should send a response to the client.

PLCPRJ_CLIENT_SEND_CYCLE_|T#1s Cycle time based on which a client sends send data

TIME (TX) to the server.

PLCPRJ_RECEIVER_POLLING_C |T#200ms Cycle time based on which a client or server polls for

YCLE_TIME receive data (RX).

PLCPRJ_BUFFER_SIZE 10000 Max. internal buffer size for RX/TX data.

The PLC samples define and use the following internal error codes:

Error code Value Description

PLCPRJ_ERROR_RECEIVE_BUF |16#8101 The internal receive buffer reports an overflow.
FER_OVERFLOW

PLCPRJ_ERROR_SEND_ BUFFE [16#8102 The internal send buffer reports an overflow.
R_OVERFLOW

PLCPRJ_ERROR_RESPONSE_TI |16#8103 The server has not sent the response within the
MEOUT specified timeout time.
PLCPRJ_ERROR_INVALID_FRA |16#8104 The telegram formatting is incorrect (size, faulty data
ME_FORMAT bytes etc.).

The client and server applications (FB_ServerApplication, FB_ClientApplication) were implemented as
function blocks. The application and the connection can thus be instanced repeatedly.

6.1.3 Sample03: “Echo” client/server

This sample is based on the functionality offered by the former TcSocketHelper.Lib, which is now part of
Tc2_Tcplp library. It realizes a Client/Server PLC application based on the functionality provided by the
former SocketHelper library.

The client cyclically sends a test string (sToServer) to the remote server. The server returns the same string
unchanged to the client (sFromServer). The difference between this sample and sample02 is that the server
can establish up to five connections and the client application may start five client instances. Each instance
establishes a connection to the server.

TF6310 Version: 1.4.3 83

Samples BEGKHOFF

Solution Explorer

; Solution "TwinCAT Project22' (1 project)
4 o] TwinCAT Project22
- | SYSTEM
MOTION
PLC

Add New Item... Ctrl+Shift+A& | SAFETY
Add Existing Item... Shift+Alt+A C++
I'o

Add Project from Source Control...

1y Paste Ctrl+V
Paste with Links

£
£

Import PLCopenML...

System requirements
* TwinCAT 3 Build 3093 or higher
* TwinCAT 3 Function TF6310 TCP/IP

« If two computers are used to execute the sample (one client and one server), the Function TF6310
needs to be installed on both computers

+ If one computer is used to execute the sample, e.g. client and server running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample03

Project information

The default communication settings used in the above samples are as follows:

» PLC client application: Port and IP address of the remote server: 200, '127.0.0.1'
» PLC server application: Port and IP address of the local server: 200, '127.0.0.1"

To test the client and server application on two different PCs, you have to adjust the port and the IP address
accordingly.

However, you can also test the client and server samples with the default values on a single computer by
loading the client application into the first PLC runtime system and the server application into the second
PLC runtime system.

The behavior of the PLC project sample is determined by the following global variables/constants.

Constant Value Description

PLCPRJ_MAX CONNECTIONS |5 Max. number of server->client connections. A server
can establish connections to more than one client. A
client can establish a connection to only one server at a
time.

PLCPRJ_SERVER_RESPONSE_ |T#10s Max. delay time (timeout time) after which a server

TIMEOUT should send a response to the client.

PLCPRJ_CLIENT_SEND_CYCLE_|T#1s Cycle time based on which a client sends send data

TIME (TX) to the server.

PLCPRJ_RECEIVER_POLLING_C |T#200ms Cycle time based on which a client or server polls for

YCLE_TIME receive data (RX).

PLCPRJ_BUFFER_SIZE 10000 Max. internal buffer size for RX/TX data.

84 Version: 1.4.3 TF6310

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample03

BEGKHOFF Samples

The PLC samples define and use the following internal error codes:

Error code Value Description

PLCPRJ_ERROR_RECEIVE_BUF [16#8101 The internal receive buffer reports an overflow.
FER_OVERFLOW

PLCPRJ_ERROR_SEND_ BUFFE [16#8102 The internal send buffer reports an overflow.
R_OVERFLOW

PLCPRJ_ERROR_RESPONSE_TI |[16#8103 The server has not sent the response within the
MEOUT specified timeout time.
PLCPRJ_ERROR_INVALID_FRA |16#8104 The telegram formatting is incorrect (size, faulty data
ME_FORMAT bytes etc.).

The client and server applications (FB_ServerApplication, FB_ClientApplication) were implemented as
function blocks. The application and the connection can thus be instanced repeatedly.

6.1.4 Sample04: Binary data exchange

This sample is based on the functionality offered by the former TcSocketHelper.Lib, which is now part of
Tc2_Tcplp library. It realizes a Client/Server PLC application based on the functionality provided by the
former SocketHelper library.

This sample offers a client-server application for the exchange of binary data. To achieve this, a simple
sample protocol is implemented. The length of the binary data and a frame counter for the sent and received
telegrams are transferred in the protocol header.

The structure of the binary data is defined by the PLC structure ST_ApplicationBinaryData. The binary data
are appended to the headers and transferred. The instances of the binary structure are called toServer,
fromServer on the client side and toClient, fromClient on the server side.

The structure declaration on the client and server sides can be adapted as required. The structure
declaration must be identical on both sides.

The maximum size of the structure must not exceed the maximum buffer size of the send/receive Fifos. The
maximum buffer size is determined by a constant.

The server functionality is implemented in the function block FB_ServerApplication and the client
functionality in the function block FB_ClientApplication.

In the standard implementation the client cyclically sends the data of the binary structure to the server and
waits for a response from the server. The server modifies some data and returns them to the client.

If you require a functionality, you have to modify the function blocks FB_ServerApplication and
FB_ClientApplication accordingly.

TF6310 Version: 1.4.3 85

Samples BEGKHOFF

Solution Explorer

; Solution "TwinCAT Project22' (1 project)
4 o] TwinCAT Project22
- | SYSTEM
MOTION
PLC

Add New Item... Ctrl+Shift+A& | SAFETY
Add Existing Item... Shift+Alt+A C++
I'o

Add Project from Source Control...

1y Paste Ctrl+V
Paste with Links

£
£

Import PLCopenML...

System requirements
* TwinCAT 3 Build 3093 or higher
* TwinCAT 3 Function TF6310 TCP/IP

« If two computers are used to execute the sample (one client and one server), the Function TF6310
needs to be installed on both computers

+ If one computer is used to execute the sample, e.g. client and server running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks.

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample04

Project information

The default communication settings used in the above samples are as follows:

» PLC client application: Port and IP address of the remote server: 200, '127.0.0.1'
» PLC server application: Port and IP address of the local server: 200, '127.0.0.1"

To test the client and server application on two different PCs, you have to adjust the port and the IP address
accordingly.

However, you can also test the client and server samples with the default values on a single computer by
loading the client application into the first PLC runtime system and the server application into the second
PLC runtime system.

The behavior of the PLC project sample is determined by the following global variables/constants.

Constant Value Description

PLCPRJ_MAX CONNECTIONS |5 Max. number of server->client connections. A server
can establish connections to more than one client. A
client can establish a connection to only one server at a
time.

PLCPRJ_SERVER_RESPONSE_ |T#10s Max. delay time (timeout time) after which a server

TIMEOUT should send a response to the client.

PLCPRJ_CLIENT_SEND_CYCLE_|T#1s Cycle time based on which a client sends send data

TIME (TX) to the server.

PLCPRJ_RECEIVER_POLLING_C |T#200ms Cycle time based on which a client or server polls for

YCLE_TIME receive data (RX).

PLCPRJ_BUFFER_SIZE 10000 Max. internal buffer size for RX/TX data.

86 Version: 1.4.3 TF6310

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample04

BEGKHOFF Samples

The PLC samples define and use the following internal error codes:

Error code Value Description

PLCPRJ_ERROR_RECEIVE_BUF [16#8101 The internal receive buffer reports an overflow.
FER_OVERFLOW

PLCPRJ_ERROR_SEND_ BUFFE [16#8102 The internal send buffer reports an overflow.
R_OVERFLOW

PLCPRJ_ERROR_RESPONSE_TI |[16#8103 The server has not sent the response within the
MEOUT specified timeout time.
PLCPRJ_ERROR_INVALID_FRA |16#8104 The telegram formatting is incorrect (size, faulty data
ME_FORMAT bytes etc.).

The client and server applications (FB_ServerApplication, FB_ClientApplication) were implemented as
function blocks. The application and the connection can thus be instanced repeatedly.

6.1.5 Sample05: Binary data exchange

This sample is based on the functionality offered by the former TcSocketHelper.Lib, which is now part of
Tc2_Tcplp library. It realizes a Client/Server PLC application based on the functionality provided by the
former SocketHelper library.

This sample offers a client-server application for the exchange of binary data. To achieve this, a simple
sample protocol is implemented. The length of the binary data and a frame counter for the sent and received
telegrams are transferred in the protocol header.

The structure of the binary data is defined by the PLC structure ST_ApplicationBinaryData. The binary data
are appended to the headers and transferred. The instances of the binary structure are called toServer,
fromServer on the client side and toClient, fromClient on the server side.

The structure declaration on the client and server sides can be adapted as required. The structure
declaration must be identical on both sides.

The maximum size of the structure must not exceed the maximum buffer size of the send/receive Fifos. The
maximum buffer size is determined by a constant.

The server functionality is implemented in the function block FB_ServerApplication and the client
functionality in the function block FB_ClientApplication.

In the standard implementation the client cyclically sends the data of the binary structure to the server and
waits for a response from the server. The server modifies some data and returns them to the client.

If you require a functionality, you have to modify the function blocks FB_ServerApplication and
FB_ClientApplication accordingly.

The difference between this sample and sample04 is that the server can establish up to 5 connections and
the client application may have 5 client instances. Each instance establishes a connection to the server.

TF6310 Version: 1.4.3 87

Samples BEGKHOFF

Solution Explorer

; Solution "TwinCAT Project22' (1 project)
4 o] TwinCAT Project22
- | SYSTEM
MOTION
PLC
Add New Item... Ctrl+Shift+A& | SAFETY
Add Existing Item... Shift+Alt+A C++
I'o

Add Project from Source Control...

1y Paste Ctrl+V
Paste with Links

£
£

Import PLCopenML...

System requirements
* TwinCAT 3 Build 3093 or higher
* TwinCAT 3 Function TF6310 TCP/IP

« If two computers are used to execute the sample (one client and one server), the Function TF6310
needs to be installed on both computers

+ If one computer is used to execute the sample, e.g. client and server running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks.

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample05

Project information

The default communication settings used in the above samples are as follows:

» PLC client application: Port and IP address of the remote server: 200, '127.0.0.1'
» PLC server application: Port and IP address of the local server: 200, '127.0.0.1"

To test the client and server application on two different PCs, you have to adjust the port and the IP address
accordingly.

However, you can also test the client and server samples with the default values on a single computer by
loading the client application into the first PLC runtime system and the server application into the second
PLC runtime system.

The behavior of the PLC project sample is determined by the following global variables/constants.

Constant Value Description

PLCPRJ_MAX CONNECTIONS |5 Max. number of server->client connections. A server can
establish connections to more than one client. A client
can establish a connection to only one server at a time.

PLCPRJ_SERVER_RESPONSE_ |T#10s Max. delay time (timeout time) after which a server

TIMEOUT should send a response to the client.

PLCPRJ_CLIENT_SEND_CYCLE_|T#1s Cycle time based on which a client sends send data (TX)

TIME to the server.

PLCPRJ_RECEIVER_POLLING_C |T#200ms Cycle time based on which a client or server polls for

YCLE_TIME receive data (RX).

PLCPRJ_BUFFER_SIZE 10000 Max. internal buffer size for RX/TX data.

88 Version: 1.4.3 TF6310

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample05

BEGKHOFF Samples

The PLC samples define and use the following internal error codes:

Error code Value Description

PLCPRJ_ERROR_RECEIVE_BUF [16#8101 The internal receive buffer reports an overflow.
FER_OVERFLOW

PLCPRJ_ERROR_SEND_ BUFFE [16#8102 The internal send buffer reports an overflow.
R_OVERFLOW

PLCPRJ_ERROR_RESPONSE_TI |[16#8103 The server has not sent the response within the specified

MEOUT timeout time.
PLCPRJ_ERROR_INVALID_FRA |16#8104 The telegram formatting is incorrect (size, faulty data
ME_FORMAT bytes etc.).

The client and server applications (FB_ServerApplication, FB_ClientApplication) were implemented as
function blocks. The application and the connection can thus be instanced repeatedly.

6.1.6 Sample06: "Echo" client/server with TLS (basic modules)

The following sample is essentially based on Sample01 and shows an exemplary implementation of an
"Echo" client/server system. The client sends a test string to the server at certain intervals (e.g. every
second). The remote server sends this string back to the client.

In contrast to Sample01, the communication connection in this sample is secured via TLS with client/server
certificates. The certificates are not part of the sample and must be created by the user.

In essence, this sample thus illustrates the use of the function blocks FB TIsSocketConnect [P 35],
FB TlsSocketCreate [» 38], FB TlsSocketListen [» 37], FB TlsSocketAddCa [» 40], FB TIsSocketAddCrl [» 41],

and FB TlsSocketSetCert [P 42]. These were integrated accordingly into the state machine of the client and
server sample from Sample0O1.

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample06

6.1.7 Sample07: "Echo" client/server with TLS-PSK (basic
modules)

The following sample is essentially based on Sample01 and shows an exemplary implementation of an
"Echo" client/server system. The client sends a test string to the server at certain intervals (e.g. every
second). The remote server sends this string back to the client.

In contrast to Sample01, the communication connection in this sample is secured via TLS with a pre-shared
key (PSK).

In essence, this sample thus illustrates the use of the function blocks FB TlsSocketConnect [P 35],

FB TlsSocketCreate [»_38], FB TlsSocketListen [P 37], and FB TlsSocketSetPsk [» 43]. These were integrated
accordingly into the state machine of the client and server sample from Sample01.

Project downloads

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/TCP/Sample07

TF6310 Version: 1.4.3 89

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample06
https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/TCP/Sample07

Samples BEGKHOFF

6.2 UDP
6.2.1 Sample01: Peer-to-peer communication
6.2.1.1 Overview

The following example demonstrates the implementation of a simple Peer-to-Peer application in the PLC and
consists of two PLC projects (PeerA and PeerB) plus a .NET application which also acts as a separate peer.
All peer applications send a test string to a remote peer and at the same time receive strings from a remote
peer. The received strings are displayed in a message box on the monitor of the target computer. Feel free
to use and customize this sample to your needs.

System requirements
* TwinCAT 3 Build 3093 or higher
+ TwinCAT 3 Function TF6310 TCP/IP

« If two computers are used to execute the sample, the Function TF6310 needs to be installed on both
computers

+ If one computer is used to execute the sample, e.g. Peer A und Peer B running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks

* To run the .NET sample client, only .NET Framework 4.0 is needed

Project downloads

The sources of the two PLC devices only differ in terms of different IP addresses of the remote
communication partners.

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/UDP/Sample01

https://github.com/Beckhoff/TF6310 Samples/tree/master/C%23/SampleClientUdp

Project description

The following links provide documentation for each component. Additionally, an own article explains how to
start the PLC samples with step-by-step instructions.

* Integration in TwinCAT and Test [»_91] (Starting the PLC samples)
+ PLC devices A and B [» 93] (Peer-to-Peer PLC application)
» .NET communication [P 96] (.NET sample client)

Auxiliary functions in the PLC sample projects

In the PLC samples, several functions, constants and function blocks are used, which are briefly described
below:

Fifo function block

FUNCTION BLOCK FB Fifo
VAR INPUT

new : ST FifoEntry;
END_VAR
VAR OUTPUT

bOk : BOOL;

old : ST FifoEntry;
END_VAR

A simple Fifo function block. One instance of this block is used as "send Fifo", another one as "receive Fifo".
The messages to be sent are stored in the send Fifo, the received messages are stored in the receive Fifo.
The bOk output variable is set to FALSE if errors occurred during the last action (AddTail or RemoveHead)
(Fifo empty or overfilled).

90 Version: 1.4.3 TF6310

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/UDP/Sample01
https://github.com/Beckhoff/TF6310_Samples/tree/master/C%23/SampleClientUdp

BECKHOFF Samples

A Fifo entry consists of the following components:

TYPE ST FifoEntry :
STRUCT
sRemoteHost : STRING(1l5); (* Remote address. String containing an (Ipv4) Internet Protocol dotte
d address. *)
nRemotePort : UDINT; (* Remote Internet Protocol (IP) port. *)
msg : STRING; (* Udp packet data *)
END STRUCT
END TYPE

LogError function

FUNCTION LogError : DINT

LOGERROR

—msg STRINGE0) LogError: DINTH—
—nErrld : DWORD

The function writes a message with the error code into the log book of the operating system (Event Viewer).
The global variable bLogDebugMessages must first be set to TRUE.

LogMessage function

FUNCTION LogMessage : DINT

LOGMESSAGE

—msyg ; STRIMG{S0) Loghlessage : DINT—
—thSocket: T_HSOCKET

The function writes a message into the log book of the operating system (Event Viewer) if a new socket was
opened or closed. The global variable bLogDebugMessages must first be set to TRUE.

SCODE_CODE function

FUNCTION SCODE_CODE : DWORD

SCODE_CODE

—5¢ - UDINT SCODE_CODE : DWORD—

The function masks the lower 16 bits of a Win32 error code returns them.

6.2.1.2 Integration in TWinCAT and Test

The PLC samples are delivered as a TwinCAT 3 PLC project file. Therefore you need to create a new
TwinCAT 3 solution before importing a sample. You can then import the PLC sample in TwinCAT XAE by
right-clicking on the PLC node, selecting Add existing item and then navigating to the downloaded sample
file (please choose Plc 3.x Project archive (*.tpzip) as the file type).

TF6310 Version: 1.4.3 91

Samples BEGKHOFF

Solution Explorer

g Solution "TwinCAT Project22' (1 project)
4 o] TwinCAT Project22
>l SYSTEM
MOTION
PLC
Add New Item... Ctrl+Shift+A& SAFETY
Add Existing Item... Shift+Alt+A C++
I'o

Add Project from Source Control...

1y Paste Ctrl+V
Paste with Links

@ Import PLCopenML...

Starting this sample requires two computers. Alternatively, the test may also be carried out with two runtime
systems on a single computer. The constants with the port numbers and the IP addresses of the
communication partners have to be modified accordingly.

Sample configuration with two computers:

» Device A is located on the local computer and has the IP address '10.1.128.21'
» Device B is located on the remote computer and has the IP address '172.16.6.195' 10.1.128.

Device A

Please perform the following steps to configure the sample on device A:

* Create a new TwinCAT 3 solution in TwinCAT XAE and import the Peer-to-Peer PLC project for device
A.

« Set the constant REMOTE_HOST _IP in POU MAIN to the real IP address of the remote system
(device B - in our example: '10.1.128.").

 Activate the configuration and start the PLC runtime. (Don't forget to create a license for TF6310 TCP/
IP)

Device B

Please perform the following steps to configure the sample on device B:

* Create a new TwinCAT 3 solution in TwinCAT XAE and import the Peer-to-Peer PLC project for device
B.

» Set the constant REMOTE_HOST_IP in POU MAIN to the IP address of device A (in our example:
'10.1.128.21").

 Activate the configuration and start the PLC runtime. (Don't forget to create a license for TF6310 TCP/
IP.)

* Login to the PLC runtime and write the value TRUE to the Boolean variable bSendOnceToRemote in
POU MAIN.

« Shortly afterwards, a message box with the test string should appear on device A. You can now also
repeat the same step on device A. As a result, the message box should then appear on device B.

92 Version: 1.4.3 TF6310

BECKHOFF

Samples

e @ @ @ @

TwinCAT_Projectl7.PeerToPeerA.MAIN

Comment

Prepared value

TwinCAT PleTask Server [= |

:] RECEIVED from: 10.1.128.30, Port: 1001, msg: Helle remote host!

oK

'RECEIVED from: 10.1.128.30, Port: 1001, msg: %s’

Expression Type Value
@ LOCAL_HOST_IP STRING(15)
% LOCAL_HOST_PORT UDINT G
@ REMOTE_HOST_IP STRING(15) '10.1.128.30'
@ REMOTE_HOST_PORT UDINT G
+ @ fbSocketCloseal FB_SaocketCloseal
@ bCloseal BOOL FALSE
+ @ fbPeerToPeer FB_PeerToPeer
+ é sendFifo FB_Fifo
+ @ receiveFifo FB_Fifo
+ é sendToEntry ST_FifoEntry
+ @ entryReceivedFrom ST_FifoEntry
@ tmp STRING
% bSendOnceToltself BOOL
@ bSendOnceToRemote BOOL
6.2.1.3 PLC devices A and B

The required functionality was encapsulated in the function block FB_PeerToPeer. Each of the
communication partners uses an instance of the FB_PeerToPeer function block. The block is activated
through a rising edge at the bEnable input. A new UDP socket is opened, and data exchange commences.
The socket address is specified via the variables sLocalHost and nLocalPort. A falling edge stops the data
exchange and closes the socket. The data to be sent are transferred to the block through a reference
(VAR_IN_OUT) via the variable sendFifo. The data received are stored in the variable receiveFifo.

Name

Default value

Description

g_sTclpConnSvrAddr

Network address of the TwinCAT TCP/IP Connection
Server. Default: Empty string (the server is located on
the local PC);

RFLOW

bLogDebugMessages TRUE Activates/deactivates writing of messages into the log
book of the operating system;

PLCPRJ_ERROR_SENDFIFO_OV |16#8103 Sample project error code: The send Fifo is full.

ERFLOW

PLCPRJ_ERROR_RECFIFO_OVE |16#8104 Sample project error code: The receive Fifo is full.

FUNCTION_BLOCK FB_PeerToPeer

FB_FeerToPeer
—sLocalHost hCreatedp—
—nLacalPort hBuUsy—
—hEnahle hErrar—
—zendFifo = nErfdF—
—receiveFifo =
Interface
VAR IN OUT

sendFifo : FB Fifo;
receiveFifo : FB Fifo;
END VAR
VAR INPUT
sLocalHost : STRING(15);
nLocalPort : UDINT;
bEnable : BOOL;
END VAR
VAR_OUTPUT
bCreated : BOOL;
bBusy : BOOL;
bError : BOOL;

TF6310

Version: 1.4.3

93

Samples BECKHOFF
nErrId : UDINT;

END_VAR

VAR
fbCreate : FB SocketUdpCreate;
fbClose : FB SocketClose;
fbReceiveFrom : FB SocketUdpReceiveFrom;
fbSendTo : FB_SocketUdpSendTo;
hSocket : T HSOCKET;
eStep : E ClientServerSteps;
sendTo : ST FifoEntry;
receivedFrom : ST FifoEntry;

END VAR

Implementation

CASE eStep OF

UDP_STATE IDLE:
IF bEnable XOR bCreated THEN
bBusy := TRUE;

bError := FALSE;
nErrid := 0;
IF bEnable THEN

eStep := UDP_STATE CREATE START;
ELSE

eStep := UDP STATE CLOSE START;
END IF

ELSIF bCreated THEN
sendFifo.RemoveHead (old => sendTo);
IF sendFifo.bOk THEN
eStep := UDP_STATE SEND START;
ELSE (* empty ¥*)
eStep := UDP_STATE RECEIVE START;
END IF
ELSE
bBusy := FALSE;
END IF

UDP_STATE CREATE START:

fbCreate (bExecute := FALSE);
fbCreate (sSrvNetId:= g sTcIpConnSvrAddr,
sLocalHost:= sLocalHost,

nLocalPort:= nlLocalPort,
bExecute:= TRUE) ;
eStep := UDP_STATE CREATE WAIT;

UDP_STATE CREATE WAIT:
fbCreate (bExecute := FALSE);
IF NOT fbCreate.bBusy THEN
IF NOT fbCreate.bError THEN

bCreated := TRUE;

hSocket := fbCreate.hSocket;

eStep := UDP_STATE IDLE;

LogMessage ('Socket opened (UDP)!', hSocket);
ELSE

LogError ('FB SocketUdpCreate', fbCreate.nErrId);

nErrId := fbCreate.nErrId;

eStep := UDP_STATE ERROR;
END IF

END IF

UDP_STATE SEND START:

fbSendTo (bExecute := FALSE);
fbSendTo (sSrvNetId:=g sTcIpConnSvrAddr,
sRemoteHost := sendTo.sRemoteHost,
nRemotePort := sendTo.nRemotePort,

hSocket:= hSocket,

pSrc:= ADR(sendTo.msg),

cbLen:= LEN(sendTo.msg) + 1, (* include the end delimiter
bExecute:= TRUE) ;
eStep := UDP_STATE SEND WAIT;

UDP_STATE SEND WAIT:
fbSendTo (bExecute := FALSE);
IF NOT fbSendTo.bBusy THEN
IF NOT fbSendTo.bError THEN

eStep := UDP_STATE RECEIVE START;
ELSE
LogError ('FB_SocketSendTo (UDP)', fbSendTo.nErrId);
nErrId := fbSendTo.nErrId;
94 Version: 1.4.3 TF6310

BECKHOFF

Samples

eStep :=
END IF
END IF

UDP_STATE ERROR;

UDP_STATE RECEIVE START:
MEMSET (ADR(receivedFrom), O,
fbReceiveFrom(bExecute := FALSE);

SIZEOF (

receivedFrom));

fbReceiveFrom(sSrvNetId:=g sTcIpConnSvrAddr,

hSocket:= hSocket,
pDest:= ADR(receivedFrom.msg

cbLen:= SIZEOF(receivedFrom.msg) - 1,

bExecute:= TRUE) ;
eStep := UDP_STATE RECEIVE WAIT;

UDP_STATE RECEIVE WAIT:
fbReceiveFrom(bExecute := FALSE);
IF NOT fbReceiveFrom.bBusy THEN

IF NOT fbReceiveFrom.bError THEN
IF fbReceiveFrom.nRecBytes >
receivedFrom.nRemotePort
receivedFrom. sRemoteHost
receiveFifo.AddTail (new :

IF NOT receiveFifo.bOk THE

LogError ('Receive fifo overflow!',
END IF

END IF

eStep := UDP_STATE IDLE;

ELSIF fbReceiveFrom.nErrId =
LogError (

) 4

(*without string delimiter *)

0 THEN
:= fbReceiveFrom.nRemotePort;

fbReceiveFrom.sRemoteHost;
= receivedFrom);

(* Check for fifo overflow *)
PLCPRJ_ERROR_RECFIFO_ OVERFLOW) ;

16#80072746 THEN
'The connection is reset by remote side.’,

eStep := UDP_STATE IDLE;
ELSE
LogError (
nErrId := fbReceiveFrom.nErrId;
eStep := UDP_STATE ERROR;
END IF

END IF

UDP STATE CLOSE START:
fbClose (bExecute :=
fbClose (

hSocket:= hSocket,
bExecute:= TRUE) ;
eStep := UDP_STATE CLOSE WAIT;

FALSE);

UDP_STATE CLOSE WAIT:
fbClose (bExecute := FALSE);
IF NOT fbClose.bBusy THEN
LogMessage ('Socket closed
bCreated := FALSE;
MEMSET (ADR (hSocket), 0,
IF fbClose.bError THEN

LogError ('FB_ SocketClose
nErrId := fbClose.nErrId;
eStep := UDP_STATE ERROR;
ELSE
bBusy := FALSE;
bError := FALSE;
nErrId := 0;
eStep := UDP_STATE IDLE;
END IF

END IF

UDP_STATE ERROR: (* Error step *)

bError := TRUE;
IF bCreated THEN
eStep := UDP_STATE CLOSE_START;
ELSE
bBusy := FALSE;
eStep := UDP_STATE IDLE;
END IF
END CASE

MAIN program

(uDP) !'',

(upp) ',

sSrvNetId:= g sTcIpConnSvrAddr,

hSocket) ;

SIZEOF (hSocket)) ;

fbClose.nErrId);

fbReceiveFrom.nErrId) ;

'FB_SocketUdpReceiveFrom (UDP client/server)', fbReceiveFrom.nErrId);

Previously opened sockets must be closed after a program download or a PLC reset. During PLC start-up,
this is done by calling an instance of the FB_SocketCloseAll [»_22] function block. If one of the variables

bSendOnceToltself or bSendOnceToRemote has a raising edge, a new Fifo entry is generated and stored in
the send Fifo. Received messages are removed from the receive Fifo and displayed in a message box.

TF6310

Version: 1.4.3

95

Samples BEGKHOFF

PROGRAM MAIN
VAR CONSTANT

LOCAL_HOST IP : STRING(15) = 'y
LOCAL HOST PORT : UDINT = 1001;
REMOTE HOST IP : STRING (15) = '172.16.2.209";
REMOTE_HOST_PORT : UDINT = 1001;
END_VAR
VAR
fbSocketCloseAll : FB_SocketCloseAll;
bCloseAll : BOOL := TRUE;
fbPeerToPeer : FB_ PeerToPeer;
sendFifo : FB Fifo;
receiveFifo : FB Fifo;
sendToEntry : ST FifoEntry;
entryReceivedFrom : ST FifoEntry;
tmp : STRING;

bSendOnceToItself : BOOL;
bSendOnceToRemote : BOOL;
END VAR

IF bCloseAll THEN (*On PLC reset or program download close all old connections *)
bCloseAll := FALSE;

fbSocketCloseAll (sSrvNetId:= g sTcIpConnSvrAddr, bExecute:= TRUE, tTimeout:= T#10s);
ELSE

fbSocketCloseAll (bExecute:= FALSE) ;
END IF

IF NOT fbSocketCloseAll.bBusy AND NOT fbSocketCloseAll.bError THEN

IF bSendOnceToRemote THEN

bSendOnceToRemote := FALSE; (* clear flag *)
sendToEntry.nRemotePort := REMOTE HOST PORT; (* remote host port number*)
sendToEntry.sRemoteHost := REMOTE HOST IP; (* remote host IP address *)
sendToEntry.msg := 'Hello remote host!'; (* message text¥*);
sendFifo.AddTail (new := sendToEntry); (* add new entry to the send queue*)
IF NOT sendFifo.bOk THEN (* check for fifo overflow*)

LogError ('Send fifo overflow!', PLCPRJ ERROR SENDFIFO OVERFLOW) ;
END IF
END IF

IF bSendOnceTolItself THEN

bSendOnceToItself := FALSE; (* clear flag *)
sendToEntry.nRemotePort := LOCAL_ HOST_PORT; (* nRemotePort == nLocalPort => sen
d it to itself *)
sendToEntry.sRemoteHost := LOCAL HOST IP; (* sRemoteHost == sLocalHost =>
send it to itself *)
sendToEntry.msg := 'Hello itself!'; (* message text*);
sendFifo.AddTail (new := sendToEntry); (* add new entry to the send queue*)
IF NOT sendFifo.bOk THEN (* check for fifo overflow*)
LogError ('Send fifo overflow!', PLCPRJ ERROR SENDFIFO OVERFLOW) ;
END IF
END IF

(* send and receive messages ¥*)
fbPeerToPeer (sendFifo := sendFifo, receiveFifo := receiveFifo, sLocalHost := LOCAL HOST IP, nLocal
Port := LOCAL HOST PORT, bEnable := TRUE);

(* remove all received messages from receive queue ¥*)

REPEAT
receiveFifo.RemoveHead (old => entryReceivedFrom);
IF receiveFifo.bOk THEN
tmp := CONCAT('RECEIVED from: ', entryReceivedFrom.sRemoteHost);
tmp := CONCAT(tmp, ', Port: ');
tmp := CONCAT(tmp, UDINT_ TO_ STRING (entryReceivedFrom.nRemotePort));
tmp := CONCAT(tmp, ', msg: %s');
ADSLOGSTR (ADSLOG MSGTYPE HINT OR ADSLOG MSGTYPE MSGBOX, tmp, entryReceivedFrom.msg);
END IF
UNTIL NOT receiveFifo.bOk
END REPEAT
END IF
6.2.1.4 .NET communication

This sample demonstrates how a .NET communication partner for PLC samples Peer-to-Peer device A or B
can be realized.

96 Version: 1.4.3 TF6310

BEGKHOFF Samples

TwinCAT_Project9.PeerToPeerA.MAIN

Expression Type Value Prepared value
& LOCAL HOST IP STRING(15) '10.1.128.21" E - - = |
@ LOCAL_HOST PORT UDINT @ 10 Al —_———
& REMOTE_HOST_IP STRING(15) 1012821 (f
REMOTE HOST PORT UDINT e 1002 28.06.2012 17:17:40: Hello remote hast!

+ @ fbSocketCloseal FB_SocketCloseall
@ bCloseal BOOL FALSE

+ @ fbPeerToPeer FB_PeerToPeer

¥ @ sendfife F8_Fifo Host: 127.00.1 Pott: 1001

+ @ receiveFifo FB_Fifo

+ @ sendToEntry ST_FifoEntry Message: Send

+ @ entryReceivedFram ST_FifoEntry
@ tmp STRING " . i
bSendOnceToltself BOOL
#® bSendOnceToRemote BOOL FALSE

The .NET Sample Client can be used to send single UPD data packages to a UPD Server, in this case the
PLC project PeerToPeerA.

Download

Download the test client.

Unpack the ZIP file; the .exe file runs on a Windows system.

How it works

The sample uses the .Net libraries System.Net and System.Net.Sockets to implement a UDP client (class
UdpClient). While listening for incoming UDP packets in a background thread, a string can be sentto a
remote device by specifying its IP address and port number and clicking the Send button.

For a better understanding of this article, imagine the following setup:

» The PLC project Peer-to-Peer device A is running on a computer with IP address 10.1.128.21
« The .NET application is running on a computer with IP address 10.1.128.30

Description

The client itself uses port 11000 for sending. At the same time it opens this port and displays received
messages in the upper part of the interface as a log:

ol UDP Sample Client (=)=][=]

13.04.2015 11:55:34: Beckhoff TCP-UDP RT
13.04.2015 11:59:35: Beckhoff TCP-UDP RT
13.04 2015 11:59:35: Beckhoff TCP-UDP RT
13.04 2015 11:59:35: Beckheff TCP-UDP RT

Destination: 172.17.36.158 Port: 10000
Source: 1721721555 -
Message: Eeckhoff TCP-UDP RT Send

Hirt: Client sends./receives on udp port: 11000

TF6310 Version: 1.4.3 97

http://download.beckhoff.com/download/Software/TwinCAT/TwinCAT3/Samples/TF6311-TCPUDPRT/Sample02-UdpDemo/TF631x-SampleClientUdp.zip

Samples BEGKHOFF

Together with the PLC / C++ examples, this results in an echo example:
A UDP message is sent from the client port 11000 to the server port 10000, which returns the same data to
the sender.

The client can be configured via the interface:
 Destination: IP address
» Port: The port that is addressed in the destination

» Source: Sender network card (IP address).
"OS-based" operating system deals with selection of the appropriate network card.

* Message

TF6311 “TCP/UDP Realtime” does not allow local communication. However, for testing purposes a different
network interface can be selected via "Source", so that the UDP packet leaves the computer through one
network card and arrives on the other network card ("loop cable").

6.2.2 Sample02: Multicast

This sample demonstrates how to send and receive Multicast packages via UDP.
Client and Server cyclically send a value to each other via a Multicast IP address.

Client and Server are realized by two PLC applications and delivered within a single TwinCAT 3 solution.

System requirements
» TwinCAT 3 Build 3093 or higher
» TwinCAT 3 Function TF6310 TCP/IP version 1.0.64 or higher
* TwinCAT 3 Library Tc2_Tcplp version 3.2.64.0 or higher

+ If one computer is used to execute the sample, e.g. client and server running in two separate PLC
runtimes, both PLC runtimes need to run in separate tasks.

Project download

https://github.com/Beckhoff/TF6310 Samples/tree/master/PLC/UDP/Sample02

98 Version: 1.4.3 TF6310

https://github.com/Beckhoff/TF6310_Samples/tree/master/PLC/UDP/Sample02

BECKHOFF Appendix

7 Appendix

71 OSI model

The following article is a short introduction into the OSI model and describes how this model takes part in our
everyday network communication. Note that the ambition to create this article was not to replace more
detailed documentations or books about this topic, therefore please only consider it to be a very superficial
introduction.

The OSI (Open Systems Interconnection) model describes a standardization of the functionalities in a
communication system via abstract layers. Each layer defines an own set of functionalities during the
communication between network devices and only communicates with the layer above and below.

0S| model
Layer MName Example protocols
7 Application Layer HTTP, FTP, DNS, SNMP, Telnet
7] Presentation Layer 550, TLS
5 Session Layer MetBIOS, PPTP
4 Transport Layer TCP, UDP
3 Metwork Layer IP, ARP, ICMP, IPSec
2 Data Link Layer PPP, ATM, Ethernet
1 Physical Layer Ethernet, USB, Bluetooth, IEEEB02.11

Example: If you use your web browser to navigate to http://wwwbeckhoff.com, this communication uses the
following protocols from each layer, starting at layer 7: HTTP — TCP — IP — Ethernet. On the other hand,
entering https://www.beckhoff.com would use HTTP — SSL — TCP — IP — Ethernet.

The TwinCAT 3 Function TF6310 TCP/IP provides functionalities to develop network-enabled PLC programs
using either the transport protocols TCP or UDP. Therefore, PLC programmers may implement their own
application layer protocol, defining an own message structure to communicate with remote systems.

7.2 KeepAlive configuration

The transmission of TCP KeepAlive messages verifies if an idle TCP connection is still active. Since version
1.0.47 of the TwinCAT TCP/IP Server (TF6310), the KeepAlive configuration of the Windows operating
system is used, which can be configured via the following registry keys:

The following documentation is an excerpt of a Microsoft Technet article.

KeepAliveTime

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Data type Range Default value
REG_DWORD 0x1-OxFFFFFFFF (milliseconds) |0x6DDDOO0 (7,200,000
milliseconds = 2 hours)

TF6310 Version: 1.4.3 99

http://technet.microsoft.com/en-us/library/cc957549.aspx

BECKHOFF

Appendix

Description

Determines how often TCP sends keep-alive transmissions. TCP sends keep-alive transmissions to verify
that an idle connection is still active.This entry is used when the remote system is responding to TCP.
Otherwise, the interval between transmissions is determined by the value of the KeepAlivelnterval entry. By
default, keep-alive transmissions are not sent. The TCP keep-alive feature must be enabled by a program,
such as Telnet, or by an Internet browser, such as Internet Explorer.

KeepAlivelnterval

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Data type Range Default value

REG_DWORD 0x1-0xFFFFFFFF (milliseconds) |0x3E8 (1,000 milliseconds = 1
second)

Description

Determines how often TCP repeats keep-alive transmissions when no response is received. TCP sends
keep-alive transmissions to verify that idle connections are still active. This prevents TCP from inadvertently

disconnecting active lines.

7.3

7.31

Error codes

Overview of the error codes

Codes (hex)

Codes (dec)

Error source

Description

0x00000000-0x00007800

0-30720

TwinCAT system error

codes [» 103

TwinCAT system error
(including ADS error
codes)

0x00008000-0x000080FF

32768-33023

Internal TwinCAT TCP/IP

Connection Server error

codes [101

Internal error of the
TwinCAT TCP/IP
Connection Server

0x80070000-0x8007FFFF

2147942400-2148007935

Error source = Code -
0x80070000 = Win32

system error codes

Win32 system error
(including Windows
sockets error codes)

Requirements

Development environment

Target system type

PLC libraries to include

TwinCAT v3.1

PC, CX (x86) or CX (ARM)

Tc2_Tceplp

100

Version: 1.4.3

TF6310

http://technet.microsoft.com/en-us/library/cc957548.aspx

BEGKHOFF Appendix

7.3.2 Internal error codes of the TwinCAT TCP/IP Connection
Server

TF6310 Version: 1.4.3 101

Appendix BEGKHOFF
Code Code Symbolic constant Description
(hex) (dec)
0x0000800| 32769 |TCPADSERROR_NOMO |No new sockets can be created (for FB_SocketListen
1 REENTRIES and FB_SocketConnect).
0x0000800| 32770 |TCPADSERROR_NOTF |Socket handle is invalid (for FB_SocketReceive,
2 OUND FB_SocketAccept, FB_SocketSend etc.).
0x0000800| 32771 |TCPADSERROR_ALREA|Is returned when FB_SocketListen is called, if the Tcplp
3 DYEXISTS port listener already exists.
0x0000800| 32772 |TCPADSERROR_NOTC |Is returned when FB_SocketReceive is called, if the
4 ONNECTED client socket is no longer connected with the server.
0x0000800| 32773 |TCPADSERROR_NOTLI |Is returned when FB_SocketAccept is called, if an error
5 STENING was registered in the listener socket.
0x0000800| 32774 |TCPADSERROR_HOST_|Returned if the target system is not reachable.
6 NOT_FOUND
0x0000808| 32896 |TCPADSERROR_TLS_ | |Returned if FB_TIsSocketAddCa, FB_TIsSocketAddCrl
0 NVALID_STATE FB_TisSocketSetCert or FB_TlsSocketSetPsk are called
and a Connect has already been called.
0x0000808| 32897 |TCPADSERROR_TLS C |Returned if the specified CA certificate was not found.
1 A NOTFOUND
0x0000808| 32898 |TCPADSERROR_TLS C |Returned if the specified certificate file was not found.
2 ERT_NOTFOUND
0x0000808| 32899 |TCPADSERROR_TLS_K |Returned if the specified file with the private key was not
3 EY_NOTFOUND found.
0x0000808| 32900 |TCPADSERROR_TLS C |Returned if the specified CA certificate could not be read
4 A_INVALID or is invalid.
0x0000808, 32901 |TCPADSERROR _TLS C |Returned if the specified certificate file could not be read
5 ERT_INVALID or is invalid.
0x0000808| 32902 |TCPADSERROR_TLS_K |Returned if the specified private key could not be read or
6 EY_INVALID is invalid.
0x0000808| 32903 |TCPADSERROR_TLS V |Returned if the remote terminal could not be verified
7 ERIFY_FAIL during the TLS handshake.
0x0000808| 32904 |TCPADSERROR_TLS_S |Returned if a general error occurred while setting up the
8 ETUP TLS connection.
0x0000808| 32905 |TCPADSERROR_TLS_H |Returned if an error occurred during the TLS handshake.
9 ANDSHAKE_FAIL Usually the handshake always works. However, if there
are connection problems during the handshake, it may
fail.
0x0000808| 32906 |TCPADSERROR_TLS C |Returned if an invalid cipher suite was specified.
A IPHER _INVALID
0x0000808| 32907 |TCPADSERROR _TLS V |Returned if an invalid TLS version was specified.
B ERSION_INVALID
0x0000808| 32908 |TCPADSERROR_TLS C |Returned if the specified Certificate Revocation List
C RL_INVALID (CRL) is invalid.
0x0000808| 32909 |TCPADSERROR_TLS | |Returned if an internal error occurred while setting up
D NTERNAL _ERROR the TLS connection.
0x0000808| 32910 |TCPADSERROR_TLS P |Returned if an error occurred when using a
E SK_SETUP_ERROR PreSharedKey (PSK) for TLS.
0x0000808| 32911 |TCPADSERROR_TLS C |Returned if the CommonName in the certificate of the
F N_MISMATCH remote terminal does not match the host name or IP
address used.
0x0000809| 32912 |TCPADSERROR_TLS C |Returned when the certificate of the remote terminal has
0 ERT_EXPIRED expired.
0x0000809| 32913 |TCPADSERROR_TLS C |Returned when the certificate of the remote terminal has
1 ERT_REVOKED been revoked.
0x0000809| 32914 |TCPADSERROR_TLS_ C |Returned when the remote terminal did not submit a
2 ERT_MISSING certificate.
102 Version: 1.4.3 TF6310

BEGKHOFF Appendix

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1 PC, CX (x86) or CX (ARM) Tc2 _Tcplp
7.3.3 Troubleshooting/diagnostics

 In the event of connection problems the PING command can be used to ascertain whether the external
communication partner can be reached via the network connection. If this is not the case, check the
network configuration and firewall settings.

 Sniffer tools such as Wireshark enable logging of the entire network communication. The log can then
be analysed by Beckhoff support staff.

* Check the hardware and software requirements described in this documentation (TwinCAT version, CE
image version etc.).

» Check the software installation hints described in this documentation (e.g. installation of CAB files on
CE plattform).

» Check the input parameters that are transferred to the function blocks (network address, port number,
data etc, connection handle.) for correctness. Check whether the function block issues an error code.

The documentation for the error codes can be found here: Overview of error codes [» 100].

» Check if the other communication partner/software/device issues an error code.

 Activate the debug output integrated in the TcSocketHelper.Lib during connection establishment/
disconnect process (keyword: CONNECT_MODE_ENABLEDBG). Open the TwinCAT System
Manager and activate the LogView window. Analyze/check the debug output strings.

Requirements

Development environment Target system type PLC libraries to include
TwinCAT v3.1 PC, CX (x86) or CX (ARM) Tc2_Tceplp
7.3.4 ADS Return Codes

Grouping of error codes:

Global error codes: ADS Return Codes [P_103]... (0x9811_0000 ...)
Router error codes: ADS Return Codes [P_104]... (0x9811_0500 ...)
General ADS errors: ADS Return Codes [P_104]... (0x9811_0700 ...)
RTime error codes: ADS Return Codes [P_106]... (0x9811_1000 ...)

Global error codes

TF6310 Version: 1.4.3 103

Appendix BEGKHOFF
Hex Dec HRESULT Name Description

0x0 0 0x98110000 |ERR_NOERROR No error.

0x1 1 0x98110001 ERR_INTERNAL Internal error.

0x2 2 0x98110002 |ERR_NORTIME No real time.

0x3 3 0x98110003 |ERR_ALLOCLOCKEDMEM Allocation locked — memory error.

0x4 4 0x98110004 |ERR_INSERTMAILBOX Mailbox full — the ADS message could not be sent.
Reducing the number of ADS messages per cycle will
help.

0x5 5 0x98110005 |ERR_WRONGRECEIVEHMSG Wrong HMSG.

0x6 6 0x98110006 ERR_TARGETPORTNOTFOUND Target port not found — ADS server is not started or is
not reachable.

0x7 7 0x98110007 ERR_TARGETMACHINENOTFOUND Target computer not found — AMS route was not found.

0x8 8 0x98110008 |ERR_UNKNOWNCMDID Unknown command ID.

0x9 9 0x98110009 |ERR_BADTASKID Invalid task ID.

0xA 10 0x9811000A |ERR_NOIO No 10.

0xB 11 0x9811000B |ERR_UNKNOWNAMSCMD Unknown AMS command.

0xC 12 0x9811000C |ERR_WIN32ERROR Win32 error.

0xD 13 0x9811000D |ERR_PORTNOTCONNECTED Port not connected.

OxE 14 0x9811000E |ERR_INVALIDAMSLENGTH Invalid AMS length.

OxF 15 0x9811000F |ERR_INVALIDAMSNETID Invalid AMS Net ID.

0x10 16 0x98110010 ERR_LOWINSTLEVEL Installation level is too low —TwinCAT 2 license error.

0x11 17 0x98110011 ERR_NODEBUGINTAVAILABLE No debugging available.

0x12 18 0x98110012 ERR_PORTDISABLED Port disabled — TwinCAT system service not started.

0x13 19 0x98110013 |ERR_PORTALREADYCONNECTED Port already connected.

0x14 20 0x98110014 |ERR_AMSSYNC_W32ERROR AMS Sync Win32 error.

0x15 |21 0x98110015 |ERR_AMSSYNC_TIMEOUT AMS Sync Timeout.

0x16 22 0x98110016 |ERR_AMSSYNC_AMSERROR AMS Sync error.

0x17 23 0x98110017 ERR_AMSSYNC_NOINDEXINMAP No index map for AMS Sync available.

0x18 24 0x98110018 |ERR_INVALIDAMSPORT Invalid AMS port.

0x19 25 0x98110019 |ERR_NOMEMORY No memory.

Ox1A |26 0x9811001A |ERR_TCPSEND TCP send error.

ox1B |27 0x9811001B |ERR_HOSTUNREACHABLE Host unreachable.

0x1C |28 0x9811001C |ERR_INVALIDAMSFRAGMENT Invalid AMS fragment.

0x1D |29 0x9811001D |ERR_TLSSEND TLS send error — secure ADS connection failed.

Ox1E |30 0x9811001E |ERR_ACCESSDENIED Access denied — secure ADS access denied.

Router error codes

Hex Dec HRESULT Name Description

0x500 [1280 |0x98110500 |ROUTERERR_NOLOCKEDMEMORY Locked memory cannot be allocated.

0x501 [1281 |0x98110501 ROUTERERR_RESIZEMEMORY The router memory size could not be changed.

0x502 (1282 |0x98110502 ROUTERERR_MAILBOXFULL The mailbox has reached the maximum number of
possible messages.

0x503 [1283 |0x98110503 |ROUTERERR_DEBUGBOXFULL The Debug mailbox has reached the maximum
number of possible messages.

0x504 |1284 |0x98110504 |ROUTERERR_UNKNOWNPORTTYPE The port type is unknown.

0x505 [1285 |0x98110505 |ROUTERERR_NOTINITIALIZED The router is not initialized.

0x506 [1286 |0x98110506 |ROUTERERR_PORTALREADYINUSE The port number is already assigned.

0x507 [1287 |0x98110507 |ROUTERERR_NOTREGISTERED The port is not registered.

0x508 [1288 |0x98110508 |ROUTERERR_NOMOREQUEUES The maximum number of ports has been reached.

0x509 (1289 |0x98110509 |ROUTERERR_INVALIDPORT The port is invalid.

0x50A [1290 |0x9811050A |ROUTERERR_NOTACTIVATED The router is not active.

0x50B [1291 |0x9811050B |ROUTERERR_FRAGMENTBOXFULL The mailbox has reached the maximum number for
fragmented messages.

0x50C (1292 |0x9811050C |ROUTERERR_FRAGMENTTIMEOUT A fragment timeout has occurred.

0x50D [1293 |0x9811050D |ROUTERERR_TOBEREMOVED The port is removed.

General ADS error codes

104

Version: 1.4.3

TF6310

BEGKHOFF Appendix

Hex Dec HRESULT Name Description
0x700 |1792 |0x98110700 |ADSERR_DEVICE_ERROR General device error.
0x701 |[1793 |0x98110701 |ADSERR_DEVICE_SRVNOTSUPP Service is not supported by the server.
0x702 1794 |0x98110702 |ADSERR_DEVICE_INVALIDGRP Invalid index group.
0x703 1795 |0x98110703 |ADSERR_DEVICE_INVALIDOFFSET Invalid index offset.
0x704 |1796 |0x98110704 |ADSERR_DEVICE_INVALIDACCESS Reading or writing not permitted.
0x705 |1797 |0x98110705 |ADSERR_DEVICE_INVALIDSIZE Parameter size not correct.
0x706 |1798 |0x98110706 |ADSERR_DEVICE_INVALIDDATA Invalid data values.
0x707 |1799 |0x98110707 |ADSERR_DEVICE_NOTREADY Device is not ready to operate.
0x708 |1800 |0x98110708 |ADSERR_DEVICE_BUSY Device is busy.
0x709 [1801 |0x98110709 |ADSERR_DEVICE_INVALIDCONTEXT Invalid operating system context. This can result

from use of ADS blocks in different tasks. It may be
possible to resolve this through multitasking
synchronization in the PLC.

0x70A |1802 |0x9811070A |ADSERR_DEVICE_NOMEMORY Insufficient memory.

0x70B |1803 |0x9811070B |ADSERR_DEVICE_INVALIDPARM Invalid parameter values.
0x70C 1804 |0x9811070C |ADSERR_DEVICE_NOTFOUND Not found (files, ...).

0x70D |1805 |0x9811070D |ADSERR_DEVICE_SYNTAX Syntax error in file or command.
0x70E |1806 |0x9811070E |ADSERR_DEVICE_INCOMPATIBLE Objects do not match.

0x70F [1807 |0x9811070F |ADSERR_DEVICE_EXISTS Object already exists.

0x710 |1808 |0x98110710 |ADSERR_DEVICE_SYMBOLNOTFOUND Symbol not found.

0x711 1809 |0x98110711 |ADSERR_DEVICE_SYMBOLVERSIONINVALID |Invalid symbol version. This can occur due to an
online change. Create a new handle.

0x712 |1810 |0x98110712 |ADSERR_DEVICE_INVALIDSTATE Device (server) is in invalid state.
0x713 1811 |0x98110713 |ADSERR_DEVICE_TRANSMODENOTSUPP AdsTransMode not supported.
0x714 |1812 |0x98110714 |ADSERR_DEVICE_NOTIFYHNDINVALID Notification handle is invalid.
0x715 |1813 |0x98110715 |ADSERR_DEVICE_CLIENTUNKNOWN Notification client not registered.
0x716 |1814 |0x98110716 |ADSERR_DEVICE_NOMOREHDLS No further handle available.
0x717 1815 |0x98110717 |ADSERR_DEVICE_INVALIDWATCHSIZE Notification size too large.
0x718 1816 |0x98110718 |ADSERR_DEVICE_NOTINIT Device not initialized.

0x719 |1817 |0x98110719 |ADSERR_DEVICE_TIMEOUT Device has a timeout.

0x71A |1818 |0x9811071A |ADSERR_DEVICE_NOINTERFACE Interface query failed.

0x71B |1819 |0x9811071B |ADSERR_DEVICE_INVALIDINTERFACE Wrong interface requested.
0x71C (1820 |0x9811071C |ADSERR_DEVICE_INVALIDCLSID Class ID is invalid.

0x71D 1821 |0x9811071D |ADSERR_DEVICE_INVALIDOBJID Object ID is invalid.

0x71E |1822 |0x9811071E |ADSERR_DEVICE_PENDING Request pending.

0x71F (1823 |0x9811071F |ADSERR_DEVICE_ABORTED Request is aborted.

0x720 (1824 |0x98110720 |ADSERR_DEVICE_WARNING Signal warning.

0x721 (1825 |0x98110721 |ADSERR_DEVICE_INVALIDARRAYIDX Invalid array index.

0x722 |1826 |0x98110722 |ADSERR_DEVICE_SYMBOLNOTACTIVE Symbol not active.

0x723 1827 |0x98110723 |ADSERR_DEVICE_ACCESSDENIED Access denied.

0x724 (1828 |0x98110724 |ADSERR_DEVICE_LICENSENOTFOUND Missing license.

0x725 (1829 |0x98110725 |ADSERR_DEVICE_LICENSEEXPIRED License expired.

0x726 (1830 |0x98110726 |ADSERR_DEVICE_LICENSEEXCEEDED License exceeded.

0x727 |1831 |0x98110727 |ADSERR_DEVICE_LICENSEINVALID Invalid license.

0x728 1832 |0x98110728 |ADSERR_DEVICE_LICENSESYSTEMID License problem: System ID is invalid.

0x729 |1833 |0x98110729 |ADSERR_DEVICE_LICENSENOTIMELIMIT License not limited in time.
0x72A |1834 |0x9811072A |ADSERR_DEVICE_LICENSEFUTUREISSUE Licensing problem: time in the future.
0x72B (1835 |0x9811072B |ADSERR_DEVICE_LICENSETIMETOLONG License period too long.

0x72C |1836 |0x9811072C |ADSERR_DEVICE_EXCEPTION Exception at system startup.
0x72D (1837 |0x9811072D |ADSERR_DEVICE_LICENSEDUPLICATED License file read twice.

0x72E |1838 |0x9811072E |ADSERR_DEVICE_SIGNATUREINVALID Invalid signature.

Ox72F |1839 |0x9811072F |ADSERR_DEVICE_CERTIFICATEINVALID Invalid certificate.

0x730 |1840 |0x98110730 |ADSERR_DEVICE_LICENSEOEMNOTFOUND |Public key not known from OEM.
0x731 |1841 |0x98110731 |ADSERR_DEVICE_LICENSERESTRICTED License not valid for this system ID.
0x732 (1842 |0x98110732 |ADSERR_DEVICE_LICENSEDEMODENIED Demo license prohibited.

0x733 (1843 |0x98110733 |ADSERR_DEVICE_INVALIDFNCID Invalid function ID.

0x734 (1844 |0x98110734 |ADSERR_DEVICE_OUTOFRANGE Outside the valid range.

0x735 |1845 |0x98110735 |ADSERR_DEVICE_INVALIDALIGNMENT Invalid alignment.

0x736 |1846 |0x98110736 |ADSERR_DEVICE_LICENSEPLATFORM Invalid platform level.

TF6310 Version: 1.4.3 105

Appendix BEGKHOFF
Hex Dec HRESULT Name Description

0x737 |1847 |0x98110737 |ADSERR_DEVICE_FORWARD_PL Context — forward to passive level.

0x738 |1848 |0x98110738 |ADSERR_DEVICE_FORWARD_ DL Context — forward to dispatch level.

0x739 1849 |0x98110739 |ADSERR_DEVICE_FORWARD_RT Context — forward to real time.

0x740 (1856 |0x98110740 |ADSERR_CLIENT_ERROR Client error.

0x741 |1857 |0x98110741 |ADSERR_CLIENT_INVALIDPARM Service contains an invalid parameter.

0x742 |1858 |0x98110742 |ADSERR_CLIENT_LISTEMPTY Polling list is empty.

0x743 |1859 |0x98110743 |ADSERR_CLIENT_VARUSED Var connection already in use.

0x744 1860 |0x98110744 |ADSERR_CLIENT_DUPLINVOKEID The called ID is already in use.

0x745 |1861 |0x98110745 |ADSERR_CLIENT_SYNCTIMEOUT Timeout has occurred — the remote terminal is not
responding in the specified ADS timeout. The route
setting of the remote terminal may be configured
incorrectly.

0x746 (1862 |0x98110746 |ADSERR_CLIENT_W32ERROR Error in Win32 subsystem.

0x747 |1863 |0x98110747 |ADSERR_CLIENT_TIMEOUTINVALID Invalid client timeout value.

0x748 |1864 |0x98110748 |ADSERR_CLIENT_PORTNOTOPEN Port not open.

0x749 |1865 |0x98110749 |ADSERR_CLIENT_NOAMSADDR No AMS address.

0x750 |1872 |0x98110750 |ADSERR_CLIENT_SYNCINTERNAL Internal error in Ads sync.

0x751 |1873 |0x98110751 |ADSERR_CLIENT_ADDHASH Hash table overflow.

0x752 (1874 |0x98110752 |ADSERR_CLIENT_REMOVEHASH Key not found in the table.

0x753 |1875 |0x98110753 |ADSERR_CLIENT_NOMORESYM No symbols in the cache.

0x754 |1876 |0x98110754 |ADSERR_CLIENT_SYNCRESINVALID Invalid response received.

0x755 |1877 |0x98110755 |ADSERR_CLIENT_SYNCPORTLOCKED Sync Port is locked.

0x756 |1878 |0x98110756 |ADSERR_CLIENT_REQUESTCANCELLED The request was cancelled.

RTime error codes

Hex Dec HRESULT Name Description

0x1000 4096 |0x98111000 |RTERR_INTERNAL Internal error in the real-time system.

0x1001 |4097 |0x98111001 |RTERR_BADTIMERPERIODS Timer value is not valid.

0x1002 4098 |0x98111002 |RTERR_INVALIDTASKPTR Task pointer has the invalid value 0 (zero).

0x1003 4099 |0x98111003 |RTERR_INVALIDSTACKPTR Stack pointer has the invalid value 0 (zero).

0x1004 [4100 |0x98111004 |RTERR_PRIOEXISTS The request task priority is already assigned.

0x1005 |4101 |0x98111005 |RTERR_NOMORETCB No free TCB (Task Control Block) available. The
maximum number of TCBs is 64.

0x1006 (4102 |0x98111006 |RTERR_NOMORESEMAS No free semaphores available. The maximum number of
semaphores is 64.

0x1007 4103 |0x98111007 |RTERR_NOMOREQUEUES No free space available in the queue. The maximum
number of positions in the queue is 64.

0x100D [4109 |0x9811100D |RTERR_EXTIRQALREADYDEF An external synchronization interrupt is already applied.

0x100E 4110 |0x9811100E |RTERR_EXTIRQNOTDEF No external sync interrupt applied.

0x100F 4111 |0x9811100F |RTERR_EXTIRQINSTALLFAILED Application of the external synchronization interrupt has
failed.

0x1010 4112 |0x98111010 |RTERR_IRQLNOTLESSOREQUAL Call of a service function in the wrong context

0x1017 |4119 |0x98111017 |RTERR_VMXNOTSUPPORTED Intel VT-x extension is not supported.

0x1018 4120 |0x98111018 |RTERR_VMXDISABLED Intel VT-x extension is not enabled in the BIOS.

0x1019 4121 |0x98111019 |RTERR_VMXCONTROLSMISSING Missing function in Intel VT-x extension.

0x101A |4122 |0x9811101A |RTERR_VMXENABLEFAILS Activation of Intel VT-x fails.

Specific positive HRESULT Return Codes:

HRESULT Name Description

0x0000_0000 S OK No error.

0x0000_0001 S _FALSE No error.
Example: successful processing, but with a negative or
incomplete result.

0x0000_0203 S_PENDING No error.
Example: successful processing, but no result is available
yet.

0x0000_0256 S_WATCHDOG_TIMEOUT No error.
Example: successful processing, but a timeout occurred.

TCP Winsock error codes

106

Version: 1.4.3

TF6310

BEGKHOFF Appendix

Hex Dec Name Description
0x274C 10060 WSAETIMEDOUT A connection timeout has occurred - error while establishing the
connection, because the remote terminal did not respond properly after a
certain period of time, or the established connection could not be
maintained because the connected host did not respond.
0x274D 10061 WSAECONNREFUSED Connection refused - no connection could be established because the
target computer has explicitly rejected it. This error usually results from an
attempt to connect to a service that is inactive on the external host, that is,
a service for which no server application is running.
0x2751 10065 WSAEHOSTUNREACH No route to host - a socket operation referred to an unavailable host.

More Winsock error codes: Win32 error codes

7.4 Support and Service

Beckhoff and their partners around the world offer comprehensive support and service, making available fast
and competent assistance with all questions related to Beckhoff products and system solutions.

Download finder

Our download finder contains all the files that we offer you for downloading. You will find application reports,
technical documentation, technical drawings, configuration files and much more.

The downloads are available in various formats.

Beckhoff's branch offices and representatives

Please contact your Beckhoff branch office or representative for local support and service on Beckhoff
products!

The addresses of Beckhoff's branch offices and representatives round the world can be found on our internet
page: www.beckhoff.com

You will also find further documentation for Beckhoff components there.

Beckhoff Support
Support offers you comprehensive technical assistance, helping you not only with the application of
individual Beckhoff products, but also with other, wide-ranging services:

e support

 design, programming and commissioning of complex automation systems

+ and extensive training program for Beckhoff system components

Hotline: +49 5246 963-157
e-mail: support@beckhoff.com
Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:
* on-site service
* repair service
 spare parts service
* hotline service

Hotline: +49 5246 963-460
e-mail: service@beckhoff.com
Beckhoff Headquarters

Beckhoff Automation GmbH & Co. KG

TF6310 Version: 1.4.3 107

https://www.beckhoff.com/en-gb/support/download-finder/index-2.html
https://www.beckhoff.com/support
https://www.beckhoff.com/

Appendix BEGKHOFF

Huelshorstweg 20

33415 Verl

Germany

Phone: +49 5246 963-0
e-mail: info@beckhoff.com
web: www.beckhoff.com

108 Version: 1.4.3 TF6310

https://www.beckhoff.com/

More Information:
www.beckhoff.com/tf6310

Beckhoff Automation GmbH & Co. KG
Hilshorstweg 20

33415 Verl

Germany

Phone: +49 5246 9630

info@beckhoff.com
www.beckhoff.com

mailto:info@beckhoff.de?subject=TF6310
https://www.beckhoff.com
https://www.beckhoff.com/tf6310

	 Table of contents
	1 Foreword
	1.1 Notes on the documentation
	1.2 Safety instructions
	1.3 Notes on information security

	2 Overview
	2.1 Comparison TF6310 TF6311

	3 Installation
	3.1 System requirements
	3.2 Installation
	3.3 Installation Windows CE
	3.4 Licensing
	3.5 Migration from TwinCAT 2

	4 Technical introduction
	5 PLC API
	5.1 Function blocks
	5.1.1 FB_SocketConnect
	5.1.2 FB_SocketClose
	5.1.3 FB_SocketCloseAll
	5.1.4 FB_SocketListen
	5.1.5 FB_SocketAccept
	5.1.6 FB_SocketSend
	5.1.7 FB_SocketReceive
	5.1.8 FB_SocketUdpCreate
	5.1.9 FB_SocketUdpSendTo
	5.1.10 FB_SocketUdpReceiveFrom
	5.1.11 FB_SocketUdpAddMulticastAddress
	5.1.12 FB_SocketUdpDropMulticastAddress
	5.1.13 FB_TlsSocketConnect
	5.1.14 FB_TlsSocketListen
	5.1.15 FB_TlsSocketCreate
	5.1.16 FB_TlsSocketAddCa
	5.1.17 FB_TlsSocketAddCrl
	5.1.18 FB_TlsSocketSetCert
	5.1.19 FB_TlsSocketSetPsk
	5.1.20 Helper
	5.1.20.1 FB_ClientServerConnection
	5.1.20.2 FB_ServerClientConnection
	5.1.20.3 FB_ConnectionlessSocket

	5.2 Functions
	5.2.1 F_CreateServerHnd
	5.2.2 HSOCKET_TO_STRING
	5.2.3 HSOCKET_TO_STRINGEX
	5.2.4 SOCKETADDR_TO_STRING

	5.3 Data types
	5.3.1 E_SocketAcceptMode
	5.3.2 E_SocketConnectionState
	5.3.3 E_SocketConnectionlessState
	5.3.4 E_WinsockError
	5.3.5 ST_SockAddr
	5.3.6 ST_TlsConnectFlags
	5.3.7 ST_TlsListenFlags
	5.3.8 T_HSERVER
	5.3.9 T_HSOCKET

	5.4 Global constants
	5.4.1 Global Variables
	5.4.2 Library version
	5.4.3 Parameter list

	6 Samples
	6.1 TCP
	6.1.1 Sample01: "Echo" client/server (base blocks)
	6.1.1.1 Overview
	6.1.1.2 Integration in TwinCAT and Test
	6.1.1.3 PLC Client
	6.1.1.3.1 FB_LocalClient
	6.1.1.3.2 FB_ClientDataExcha

	6.1.1.4 PLC Server
	6.1.1.4.1 FB_LocalServer
	6.1.1.4.2 FB_RemoteClient
	6.1.1.4.3 FB_ServerDataExcha

	6.1.1.5 .NET client

	6.1.2 Sample02: “Echo“ client /server
	6.1.3 Sample03: “Echo” client/server
	6.1.4 Sample04: Binary data exchange
	6.1.5 Sample05: Binary data exchange
	6.1.6 Sample06: "Echo" client/server with TLS (basic modules)
	6.1.7 Sample07: "Echo" client/server with TLS-PSK (basic modules)

	6.2 UDP
	6.2.1 Sample01: Peer-to-peer communication
	6.2.1.1 Overview
	6.2.1.2 Integration in TwinCAT and Test
	6.2.1.3 PLC devices A and B
	6.2.1.4 .NET communication

	6.2.2 Sample02: Multicast

	7 Appendix
	7.1 OSI model
	7.2 KeepAlive configuration
	7.3 Error codes
	7.3.1 Overview of the error codes
	7.3.2 Internal error codes of the TwinCAT TCP/IP Connection Server
	7.3.3 Troubleshooting/diagnostics
	7.3.4 ADS Return Codes

	7.4 Support and Service

		documentation@beckhoff.com
	2023-03-08T17:23:57+0100
	Beckhoff Automation, Verl
	Documentation Publishing

