DetachFixClose

PC-based control enhances the production efficiency of your plastics machine

Daily life without plastic products is no longer conceivable and demand continues to rise. Even the ongoing discussions about resource conservation and sustainability have not initiated a U-turn here, with plastics processing continuing to gain in importance globally. However, demands for the sustainable production of plastics and a circular economy are increasingly becoming drivers of innovative technologies and processes in the plastics industry.

The requirements for plastics machines with regard to high product quality and productivity, but at the same time with reduced resource consumption and high energy efficiency, are optimally met with innovative control technology from Beckhoff: whether in the use of high-precision drive technology for production of very thin films or in the minimization of material consumption by means of ultra-precise switching over to holding pressure during injection.

Beckhoff’s open PC-based control technology offers comprehensive system solutions in various performance classes for all areas of plastics machine automation. The basic principle is based on a powerful Industrial PC, a high-performance fieldbus connection with the connected peripheral devices for sensors and actuators, dynamic drive components, and the software for engineering and real-time control. The TwinCAT automation software, the “brain” of the machine, bundles all necessary functionalities such as PLC, motion control, robotics, measurement technology, image processing, communication, IoT functions, and the HMI operating software into a single package. The range of applications in PC-based control technology extends from injection molding, blow molding, extrusion technology, and additive manufacturing to the integration of handling, production cells, and post-processing. Since all control functions are replicated in software, even complex application requirements can be implemented with little engineering effort.

The Beckhoff Industrial PCs and Embedded PC series feature Intel processors of the latest generation and performance classes. The TwinCAT 3 automation software is optimally designed to use the multi-core architecture and enables full use of the performance of the CPU cores: the machine functions can be distributed to different cores and processed in parallel, so that, for example, the visualization and the actual machine control can be distributed in parallel to two cores.

Beckhoff has been a development partner for the “first choice” companies in injection molding and blow molding technology for many years. EtherCAT, the fast communication system developed by Beckhoff, is now virtually considered a standard in the plastics industry. The strict demands of high-performance injection molding machines were a great motivation for Beckhoff to develop XFC (eXtreme Fast Control), an extremely high-performance control technology based on EtherCAT. The development of EtherCAT plug-in modules for large-volume applications was also driven by the requirements of the mass market of injection molding machines. Many years of experience, for example, in hydraulic drive technology or temperature control, led to the development of industry-specific engineering platforms.

From individual components to the complete solution, the user benefits from Beckhoff’s comprehensive expertise in plastics processing. Machine manufacturers can contribute their own process know-how – regardless of whether new machine series or the retrofitting of existing machines is concerned. In addition, open hardware and software interfaces offer machine manufacturers high degrees of freedom in machine construction. They facilitate integration of numerous different devices, including devices from third-party manufacturers. As a driver for the development of open, compatible automation interfaces, Beckhoff has supported the common industry communication standards according to Euromap and OPC UA from the very beginning. The Beckhoff control platform thus enables the realization of Industrie 4.0 concepts for machine-to-machine communication or for data processing and analysis in master computer systems or in the cloud.

As an active participant in the standardization and technology committees of the VDMA and Euromap, Beckhoff has been one of the drivers of the OPC UA-based technologies for many years. New industry standards are thus incorporated promptly into Beckhoff products.

At a glance: your benefits in plastics processing with PC-based control

TwinCAT Plastic Application Components form the application layer for plastics machines.
TwinCAT Plastic Application Components form the application layer for plastics machines.

The TwinCAT Plastic Application Components bundle Beckhoff‘s many years of plastics expertise

The TwinCAT Plastic Application Components bundle Beckhoff‘s many years of plastics expertise in a software library that covers the basic production processes in the plastics industry. The proven TwinCAT Motion Control Supplements are integrated into technology modules for plastics machines. Customers can control and parameterize their machine components, such as the clamping unit, by function block call.

With the innovative programming concept of object orientation, development time as well as maintenance and support costs for the control software are reduced. The data flow between PLC and HMI is combined in objects and represents the machine components with their respective properties. The principle of inheritance of object properties facilitates reusability of software modules. In addition, it gives machine builders the opportunity to incorporate their own process expertise and to program their machines individually or rather according to customer-specific requirements.

Based on practical experience a sequence interpreter has also been integrated. This enables machine sequences to be programmed via the graphical user interface without the need for specific programming skills. The manifold applications that make up the injection molding process call for powerful core-pulling programs. These are covered by the TwinCAT Plastic Application Components in the form of preconfigured core-pulling sequences.

The Beckhoff team of experts with in-depth process and application know-how in the plastics industry supports you in the realization of top tier plastics machines.
The Beckhoff team of experts with in-depth process and application know-how in the plastics industry supports you in the realization of top tier plastics machines.

Take advantage of Beckhoff's comprehensive know-how in servo-electric and hydraulic drive technology

As a specialist in PC-based control concepts, Beckhoff offers integrated control solutions for all important plastics manufacturing processes. Based on our many years of practical experience, we have developed a deep understanding of the requirements of plastics machine manufacturers. With our high solution competence and creativity, we help to make plastics machines and plants more productive.

Beckhoff has incorporated its accumulated know-how in servo-electrical and hydraulic drive technology into the TwinCAT Plastic Application Components software package, which covers the fundamental production processes in the plastics industry. The users leverage proven functions and save development time. The open interfaces also allow them to incorporate their own process know-how into the software and to program their machine individually, according to customer requirements.

With standard communication interfaces established in industrial automation and IT, PC-based control offers the ideal platform for the succesfull implementation od Industrie 4.0 concepts and Internet of Things (IoT) communication.
With standard communication interfaces established in industrial automation and IT, PC-based control offers the ideal platform for the succesfull implementation od Industrie 4.0 concepts and Internet of Things (IoT) communication.
The TwinCAT HMI provides the user with a location-independent visualization: with an identical user interface he can visualize and analyse the process values that are stored locally on the machine or centrally in the cloud.
The TwinCAT HMI provides the user with a location-independent visualization: with an identical user interface he can visualize and analyse the process values that are stored locally on the machine or centrally in the cloud.

Industrie 4.0 applications in the plastics industry

As a major supporter of the OPC UA organization, Beckhoff has integrated OPC UA interfaces as standard into its controllers. Various OPC UA models, as standardized for the plastics industry in the Euromap Companion Specifications, have already been built-in by Beckhoff; new specifications are continually being implemented. The Euromap-77 interface is available for injection molding machines and the Euromap-84 for extrusion systems for communication with master computers and for data transmission into the cloud. Beckhoff has developed the TwinCAT IoT software library for secure communication between the machine controller and cloud-based services. It uses standardized protocols for the cloud communication and can thus also integrate OPC UA-compatible mechanisms.

Process data are aggregated synchronously with the machine cycle via the TwinCAT Analytics software. Complete data recording provides the basis for valid analyses. As a graphic tool, TwinCAT Scope offers an extensive range of presentation options and thus facilitates the analysis: Plastics processors can use the data representation to analyse and rectify quality problems and reduced productivity due to faulty machine functions. Machine manufacturers can identify and correct mechanical problems and software errors. Through the analysis of all the data from a large number of identical types of machine by means of TwinCAT Condition Monitoring, signs of wear in pumps or gears, for example, can be determined at an early stage by establishing a relationship with the occurrence of certain frequency spectrums.

With the Plastic Application Components, typical industry requirements such as the Euromap Companion Specifications or the industry standard Quality Trace can be mapped on the basis of the TwinCAT Supplements. The TwinCAT HMI provides the user with a location- independent visualization: with an identical user interface he can visualize and analyse the process values that are stored locally on the machine or centrally in the cloud. However, Beckhoff technology also supports the retrofitting of existing machines and plants. Various hardware and software products are available for this, such as the ultra-compact C6015 Industrial PC with OPC UA interface, which can be retrofitted into an existing control cabinet, thus enabling a cloud connection. Depending on the application, this system can also be used as an edge device for the pre-processing, compression and transmission of data. The IoT Bus Coupler is available for the direct acquisition of digital or analog process values. It is particularly suitable for the retrofitting of machines and enables the uncomplicated transmission of data to higher-level systems via cloud protocol using a preconfigured network access.

Injection molding

Open automation technology with EtherCAT: ideally suited for injection molding machines

Blow molding

Open automation technology: minimizes the energy consumption of electric blow molding machines

Extrusion

Open automation technology with fieldbus diversity: ideally suited for extrusion lines

Additive manufacturing

Open automation technology with EtherCAT: perfectly suited to the additive manufacturing of plastic parts

Handling

Open automation technology with EtherCAT: perfectly suited to the handling of plastic parts

Beckhoff system solutions for handling

Production cell

Open automation technology with Euromap interfaces for production cells

Post-processing

PC-based control optimizes the post-processing and further processing of plastic parts

Beckhoff technology highlights for the plastics industry

The broad, scalable product range from Beckhoff in the areas of IPC, I/O terminals, drive technology and automation software facilitates the development of cost- and performance-optimized automation solutions for plastics machines.
The broad, scalable product range from Beckhoff in the areas of IPC, I/O terminals, drive technology and automation software facilitates the development of cost- and performance-optimized automation solutions for plastics machines.
The PC-based controller can be universally used in all machine types and production processes in the plastics industry: from injection molding and blow molding to extrusion as well as the automatic removal of parts by robot.
The PC-based controller can be universally used in all machine types and production processes in the plastics industry: from injection molding and blow molding to extrusion as well as the automatic removal of parts by robot.

The PC-based control principle

With its PC-based control technology, Beckhoff offers comprehensive system solutions in various performance classes for all areas of automation. The basic principle is based on a powerful Industrial PC, a high-performance fieldbus connection with the connected peripheral devices for sensors and actuators, and the software for engineering and real-time control. The control platform is supplemented by an extensive portfolio of drive components. The TwinCAT automation software, the "brain" of the machine, bundles all necessary functionalities such as PLC, motion control, robotics, measurement technology, image processing, communication, IoT functions and the HMI operating software into a single package.

Due to the high performance of modern processors, which Beckhoff installs in all of its PC series, and the integration of Matlab®/Simulink® in TwinCAT, computationally intensive applications such as image processing systems, measurement technology or simulation can easily be integrated into the control platform. This leads to a high functional use of the controller and allows the realization of cutting-edge technology at comparatively low total costs. Precisely scalable in terms of performance and modular in structure, the Beckhoff control and drive technology can be optimally adapted to a wide range of applications.

With the implementation of Microsoft Windows as the operating system of its Industrial PCs, Beckhoff focused on the convergence of the worlds of IT and automation at a very early stage, thus satisfying the prerequisites for Operation Technology (OT). OT, meaning the production-oriented control of the operational processes of all production resources in the intelligent factory, networks the automation devices with the classic IT data processing including cloud communication. Beckhoff's technology is based on IT standards and has the necessary openness to implement intelligent production concepts according to Industrie 4.0.

Plastics machine manufacturers benefit from the continuous increase in the performance of PC processors: shorter sampling times are already increasing the quality of the end product today and will be the requirement for the realization of self-learning machines in the future. The possibility, for example, to completely simulate an injection molding machine in the virtual design process saves time during development and commissioning.

Due to its excellent real-time characteristics and high bandwidth, EtherCAT is ideally suited for controlling the complex processes encountered in plastics machines and serves as a backbone for linking production equipment.
Due to its excellent real-time characteristics and high bandwidth, EtherCAT is ideally suited for controlling the complex processes encountered in plastics machines and serves as a backbone for linking production equipment.

EtherCAT enables perfect integration of plastic machines in the production environment

The EtherCAT technology was launched on the market by Beckhoff in 2003 and made available as an open standard for automation technology. With outstanding performance, flexible choice of topology, comprehensive diagnostics and simple configuration, EtherCAT is ideally suited for use in plastics machines. Beckhoff offers the largest number of EtherCAT-compatible automation modules for I/Os and for drive technology. Using the EtherCAT P standard, the decentralized AMP servo drive system is supplied with power and data via a single cable, thus saving mounting space in the control cabinet. This is particularly interesting for production cells with different drive technologies.

EtherCAT is one of the most widely used standards in plastics technology. A large number of EtherCAT-compatible sensors and actuators are available on the market, which guarantees a high level of investment security. Particularly interesting for electrically driven injection molding machines is the problem-free connection of drives from third-party suppliers. Other fieldbus systems such as CANopen, IO-Link and Profinet, can also be integrated as communication layers in plastics machines via EtherCAT. Future TSN implementations will be realized on the basis of the EtherCAT automation protocol.

The fast and high-precision Beckhoff control solution eXtreme Fast Control (XFC) is based on the fast communication network EtherCAT and special I/O modules optimized for XFC that record signals or trigger actions with high accuracy. With I/O response times under 100 μs, XFC enables very fast and extremely deterministic reactions and thus contributes to process optimization. The acquisition of rapidly changing input signals with high temporal resolution makes it possible, for example, to precisely control the injection process in injection molding machines, especially with servo-electric drive technology. Fast algorithms enable the magnitude and trend of the control value to be calculated precisely as a function of the switching event time. This reduces part weight fluctuations and material consumption.

EtherCAT P: one step closer to automation without control cabinets
EtherCAT P: one step closer to automation without control cabinets

EtherCAT P: the One Cable solution

EtherCAT P, the One Cable automation for the field level, is the ideal bus system for sensors, actuators and measurement technology in plastics processing. One Cable automation simplifies system wiring in machine design since components, terminal boxes and machine modules only have to be linked via a single cable. EtherCAT P integrates EtherCAT communication with system and peripheral voltage all in one cable. In addition, EtherCAT P enables direct forwarding of power supply via connected devices. All benefits of EtherCAT are retained, including free choice of topology, high speed, optimum bandwidth utilization, dynamic processing of telegrams, high-precision synchronisation, extensive diagnostics and more. With EtherCAT P, modular machines and system design can be implemented with high flexibility and considerably decreased installation and commissioning requirement. Large control cabinets of the past can be replaced and plant footprints can be dramatically reduced.

Very precise and fast: XFC enables I/O response times of less than 100 microseconds.
Very precise and fast: XFC enables I/O response times of less than 100 microseconds.

Maximum production efficiency: XFC reduces raw material consumption and increases parts quality

The fast, high-precision eXtreme Fast Control Technology (XFC) developed by Beckhoff reduces the raw material consumption and increases parts quality. I/O response times of less than 100 µs can be achieved with a powerful Industrial PC, the ultra-fast EtherCAT I/O terminals, EtherCAT as the communication system and the TwinCAT automation software. Logging of highly variable input signals with high temporal resolution enables precise control of the injection molding process. Fast algorithms enable the magnitude and trend of the control value to be precisely calculated as a function of the switching event time. The working window becomes narrower, while part weight fluctuations and raw material consumption are reduced. High-precision servo drive technology, in conjunction with XFC, increases the reproducibility of the injection molding process even further. XFC also enables the integration of measurement technology into the machine control system, eliminating the need for special hardware. This way, it is possible to implement a cost-effective solution for Condition Monitoring, for example, which can extend the service life of machines and minimise downtime through preventive maintenance.

Oversampling technology ensures ultra-precise switching over to holding pressure.
Oversampling technology ensures ultra-precise switching over to holding pressure.

The oversampling technology based on XFC makes the signal curve exactly determinable. In combination with the timestamp function of EtherCAT, which links each event with a precise point in time, the reproducibility of procedures is increased significantly compared with conventional solutions.

All safety functions can be integrated into any conceivable machine architecture with TwinSAFE: from the stand-alone to the small controller and from the
All safety functions can be integrated into any conceivable machine architecture with TwinSAFE: from the stand-alone to the small controller and from the "classic" solution to the distributed and the software controller, which meets even the most complex requirements. End customers thus get exactly the complete safety package that they need. Unnecessary costs for incorrectly dimensioned safety solutions are avoided.

TwinSAFE: the open and scalable safety technology

With TwinSAFE, Beckhoff has implemented a consistent safety concept that integrates safe functionalities into the non-safety-related control architecture. Separate safety controllers are thus superfluous. The typical safety functions can be programmed and configured on the EL6910 TwinSAFE Logic or the compact EK1960 safety controller, based on standard safety function blocks according to the safety requirements.

The Beckhoff safety solution accelerates the engineering process, as the safety-related requirements of different machine configurations can be realized by software. Prepared options are enabled by the so-called customizing, which further reduces the engineering effort. All Beckhoff safety controllers are suitable for applications up to SIL 3 according to IEC 61508 or PLe of ISO 13849-1 and thus meet the EN 201 standard for injection molding machines.

Safety technology seamlessly integrates into the terminal segment via the TwinSAFE I/O modules, whereby safe signals can be mixed with standard signals as required. This benefits, for example, blow molding machines or production cells with control cabinets in different installation locations. Due to its scalability, the Beckhoff safety solution is suitable for expansive, complex systems with distributed I/Os as well as for small injection molding and blow molding machines. One safety logic is sufficient here to realize the complete safety technology. The compact EK1960 safety controller is particularly suitable for injection molding machines with hydraulic and/or electric drives. It allows the direct control of digital switching valves with a load of 2 A, such as those used in core pullers. With the help of the TwinSAFE SC technology, signals with a low safety level can be used redundantly for safety tasks. For this purpose, corresponding EtherCAT Terminals are available for the acquisition and safe transport of these signals via EtherCAT.

TwinCAT Vision is directly integrated into the engineering environment of TwinCAT. All control functions derived from image processing, such as the exact determination of the position of the workpiece as well as the triggering of the camera and the light source, are synchronized in real time with TwinCAT Vision.
TwinCAT Vision is directly integrated into the engineering environment of TwinCAT. All control functions derived from image processing, such as the exact determination of the position of the workpiece as well as the triggering of the camera and the light source, are synchronized in real time with TwinCAT Vision.

Image processing integrated into the controller ensures the quality of the parts in plastics processing

Optical quality monitoring has long been known in plastics technology. However, due to integration costs and the lack of complete solutions, it has not yet established itself as a standard. The approach of PC-based control technology offers the ideal solution here: with TwinCAT Vision, Beckhoff integrates the image processing functionalities completely into the familiar engineering environment of the machine programmer, which makes programming and testing much simpler. All control functions derived from image processing, such as the exact determination of the position of the workpiece as well as the triggering of the camera and the light source, are synchronized in real time. This is a key advantage of the integrated image processing solution over separate systems.

The vision solution from Beckhoff is ideally suited in the plastics industry for process monitoring, e.g., for the ejector, for determining the part geometry and for position orientation.

Advantage through TwinCAT Vision

  • Improvement in quality: Precise measurement and exact optical inspection ensure compliance with the process parameters.
  • Increase in efficiency: The synchronous inline measurement of parts without a separate measuring station improves efficiency.
  • Quality assurance: Applications such as Track & Trace enable the traceability of product quality for each individual part, such as is required for safety-critical applications in the medical technology sector or for special automotive parts.
  • Temperature measurement: The surface temperature of plastic parts can be determined with the help of thermal imaging cameras.
  • Machine Learning: Inferences between machine settings and part geometries are a prerequisite for the development of learning algorithms as a milestone towards intelligent, self-learning machines.

Beckhoff product highlights for the plastics industry

With XMold, Beckhoff has created an industry-specific turnkey solution for injection molding applications of varying complexity. The 12-inch panel in portrait mode features a key arrangement that is optimized for injection molding and designed for most applications.
With XMold, Beckhoff has created an industry-specific turnkey solution for injection molding applications of varying complexity. The 12-inch panel in portrait mode features a key arrangement that is optimized for injection molding and designed for most applications.
The customer-specific operating unit of the all-electric extrusion blow molding machine from Kautex Maschinenbau underlines the machine design and increases ergonomics during operation.
The customer-specific operating unit of the all-electric extrusion blow molding machine from Kautex Maschinenbau underlines the machine design and increases ergonomics during operation.

Industry and customer-specific Control Panels and Panel PCs as a unique selling point for your machine

The ergonomic operation and the unmistakable appearance of a machine play a significant role in its success on the market. In addition to design and color, the Control Panel is of great importance as the front end of a machine. More and more mechanical engineering customers therefore want an industry or customer-specific user interface as a unique selling point. Based on an extensive portfolio of standard Control Panels and Panel PCs, Beckhoff offers a wide range of solutions with regard to technical form and design. A panel design that matches the appearance of the machine in color and dimensions underlines its innovative character. There are no limits to the implementation of the customer's wishes: from the customer-specific company logo inserted in the factory and the color scheme matching the machine design, to the completely individually designed panel on the basis of an individual device construction.

In order to meet the needs of the plastics industry for ergonomic operation, Beckhoff offers Control Panels and Panel PCs that are optimally suited to the various processes. The needs-based design of the standard panels through the integration of manually operated push buttons and switches makes machine operation more comfortable. Based on in-depth knowledge of the individual process steps in plastics processing, Beckhoff offers an industry-specific panel based on standard hardware without a great deal of development work and expenditure.

With the XMold Panel PC, Beckhoff has developed a turnkey system solution that covers the wide range of injection molding applications, from standard to special requirements. It includes a CP6212-1001 Panel PC with a 12-inch display in portrait mode, the Beckhoff I/O modules, the technology software for injection molding machines and (optional) drive components. The XMold Panel features a key arrangement that is optimized for injection molding process and is designed to suit most applications. The technology software includes standard functionalities, such as extensive core puller functions, so that there is no great programming effort on the part of the customer.

POLARIS™ customer-specific user interface for the HyPET® HPP5 injection molding machine from Husky Injection Molding Systems. Using a CP3919 19-inch Control Panel, this user interface offers an unmistakable look in a customer-specific design. This gives the machine a clear unique selling point not only on the market, but also within Husky's extensive machine portfolio.
POLARIS™ customer-specific user interface for the HyPET® HPP5 injection molding machine from Husky Injection Molding Systems. Using a CP3919 19-inch Control Panel, this user interface offers an unmistakable look in a customer-specific design. This gives the machine a clear unique selling point not only on the market, but also within Husky's extensive machine portfolio.
With the CX series of Embedded PCs, Beckhoff combines PC technology with the modular I/O level on the DIN rail in the control cabinet. Due to the fine scalability of the different device classes, the user can select exactly the right performance category for his application. Even smaller than the compact design of the Embedded PC devices is the series of ultra-compact Industrial PCs, which is therefore suitable as an alternative, especially when it comes to minimizing mounting space.
With the CX series of Embedded PCs, Beckhoff combines PC technology with the modular I/O level on the DIN rail in the control cabinet. Due to the fine scalability of the different device classes, the user can select exactly the right performance category for his application. Even smaller than the compact design of the Embedded PC devices is the series of ultra-compact Industrial PCs, which is therefore suitable as an alternative, especially when it comes to minimizing mounting space.

Modular Industrial PCs for the DIN rail

With the CX series of Embedded PCs, Beckhoff combines PC technology with the modular I/O level on the DIN rail in the control cabinet. By adding or eliminating modules and interfaces, only the components that the user needs for the respective application are installed. In this way, Embedded PCs open up a wide range of applications – for example in the field of plastics machines and production cells.

Due to its sturdiness, the CX is suitable for use as a powerful and reliable controller under harsh industrial conditions, such as vibration or heat. The fine scalability in different device classes allows users to select exactly the right performance category for their applications. The devices from the lower performance class are suitable, for example, for controlling temperature control devices, for dosing applications and for conveyor belts. Powerful control PCs are available for injection molding and blow molding machines in the CX5100 and CX5200. The devices from the CX20x0 and CX20x2 series are high-end controllers that allow for complex user interfaces, the integration of image processing, the realization of machine learning or the aggregation of large quantities of data.

Even smaller than the compact Embedded PC devices is the series of ultra-compact Industrial PCs, which is therefore suitable as an alternative, especially when it comes to minimizing mounting space. While the C6015 is suitable for control tasks in the lower performance category, the C6030 meets the requirements for a standard controller. Another advantage is the flexible mounting: while the CX can only be installed horizontally, the devices from the C60xx series can be installed in any position. Another advantage of the Embedded PCs – as for Beckhoff's entire Industrial PC portfolio – is the long-term availability of spare parts, which offers the customer a high level of investment security.

The ultra-compact Industrial PC C6015 can be used to update older machine generations for the requirements of the digital factory. As a compact and powerful IoT edge device, it handles the compression and collection of data. The ultra-compact IP 65/67 PC C7015 (left) can be mounted directly on the machine on site, even in confined spaces.
The ultra-compact Industrial PC C6015 can be used to update older machine generations for the requirements of the digital factory. As a compact and powerful IoT edge device, it handles the compression and collection of data. The ultra-compact IP 65/67 PC C7015 (left) can be mounted directly on the machine on site, even in confined spaces.

Turn your machine IoT-capable with the ultra-compact Industrial PC as an edge device

Modern plant concepts aligned to Industrie 4.0 and the Internet of Things (IoT) offer numerous advantages in terms of process efficiency, costs and quality. Beckhoff has integrated OPC UA interfaces into its automation platform for standardized communication between machines and master computers and for secure data transmission to cloud systems. For applications in plastics technology, the standards of the OPC 400xx according to Euromap specification are supported.

Older machine generations can be made fit for the requirements of the digital factory with the C6015 ultra-compact Industrial PC. As compact and powerful IoT edge devices, they handle the compression and collection of data.

Since machines in the field often lack the mounting space for additional control components, Beckhoff offers the ultra-compact Industrial PCs of the C70xx series in protection class IP 65/67. The C7015 is mounted on the outside of the machine. Sensors, for example for Condition Monitoring, are read via the EtherCAT P interface with the aid of the EtherCAT P Box modules. This allows for the fast, uncomplicated retrofitting of existing systems with standardized access to the cloud.

Suitable EtherCAT Terminals are available for all common digital and analog signal types encountered in the world of automation. Fieldbus devices, e.g., for PROFIBUS, PROFINET, CANopen, DeviceNet, Interbus, IO-Link or Lightbus, are integrated via decentralized fieldbus master/slave terminals.
Suitable EtherCAT Terminals are available for all common digital and analog signal types encountered in the world of automation. Fieldbus devices, e.g., for PROFIBUS, PROFINET, CANopen, DeviceNet, Interbus, IO-Link or Lightbus, are integrated via decentralized fieldbus master/slave terminals.
With a wide range of TwinSAFE logic-capable components, Beckhoff offers complete freedom in the design of the safety architecture.
With a wide range of TwinSAFE logic-capable components, Beckhoff offers complete freedom in the design of the safety architecture.

EtherCAT I/O modules integrate temperature control, energy measurement and safety technology into the control platform

In 1995, Beckhoff launched the Bus Terminal, which has since become one of the most important technology standards in automation technology. This was followed in 2003 by the development of the EtherCAT fast communication system. Launched by Beckhoff as an open system, it became a global standard in automation within a few years. An extensive EtherCAT I/O Terminal portfolio is available to users that is extremely well suited for automating every functionality in plastics machines and their peripherals in terms of both its performance and variance.

  • EL3318 for temperature measurement
    The EL3318 EtherCAT Terminal is ideal for temperature measurement via thermocouples. The 8-channel input terminal with integrated cold junction compensation is very compact in its design and measures temperatures with high accuracy and high signal-to-noise ratio.
  • EL3403 and EL3446 for power measurement
    The EL3403 three-phase power measurement terminal can be used to measure and optimize the power consumption of a plastics machine. In conjunction with the TwinCAT Plastic Processing Framework, the EL3403 is used for the cost-effective Condition Monitoring of the heating tapes through sequentially alternating testing in operation. In traditional control structures, the power measurement terminal can also be used for current measurement. The EL3446 is available for simple monitoring of the heating tape function. In combination with the voltage measurement in just one power measurement terminal, the power consumption of individual machine components can be recorded cost-effectively by means of current measurement. The Beckhoff SCT current transformers (SCT2xxx, SCT1xxxx) enable assembly of the appropriate combination of sensor and power measuring terminal without requiring detailed knowledge.
  • EL3255 for position detection
    The EL3255 EtherCAT Terminal allows potentiometric position detection. Due to its integrated power supply, the terminal delivers precise results (voltage values) even in environments with high interference fields. The EL3255 is particularly suitable for injection molding and blow molding machines with hydraulic drive technology.
  • EL6224 IO-Link terminal
    IO-Link is an inexpensive fieldbus for the reading of sensors with low real-time requirements. A preferred application, for example in extrusion, is the reading of melt pressure and melt temperature via the EL6224.
  • Thermocouple Fieldbus Modules FM33xx
    The fieldbus modules with EtherCAT fieldbus connection allow the safe and accurate reading of thermocouples on injection molds, for example in injection mold making. The fieldbus modules have back-voltage protection circuitry to protect against external voltages applied to the thermocouple inputs. The cabling costs are reduced by eliminating compensation cables.
  • TwinSAFE terminals for integrating safety technology into the controller
    Due to its scalability, the Beckhoff safety solution is suitable for expansive, complex systems with distributed I/Os as well as for small injection molding and blow molding machines. One safety logic is sufficient here to realize the complete safety technology. The compact EK1960 safety controller is particularly suitable for injection molding machines with hydraulic and/or electric drives. It allows the direct control of digital switching valves with a load of 2 A, such as those used in core pullers.

With the EtherCAT Terminals for energy management, the various tasks in the areas of power monitoring, process control and grid monitoring or maintenance can be solved in an optimally scalable manner.
With the EtherCAT Terminals for energy management, the various tasks in the areas of power monitoring, process control and grid monitoring or maintenance can be solved in an optimally scalable manner.

Efficient energy management

The energy consumption in plastics processing varies depending on the process, but it is generally very high and represents a considerable cost factor. Energy efficiency is therefore an essential building block for sustainable production. Beckhoff provides suitable technology for the continuous monitoring of energy consumption as well as for the detailed consumption analysis of new developments.

Beckhoff offers performance and cost-optimized software and hardware components for this purpose:

  • The TF3650 TwinCAT 3 Power Monitoring software library is a PLC library for the evaluation of raw current and voltage data provided by the EtherCAT Terminals. Appropriate function blocks are available for calculating RMS values for current, voltage and power.

The following EtherCAT Terminals are particularly suitable for the plastics industry:

  • The EL3443 and EL3453 EtherCAT Terminals enable the direct measurement of all relevant electrical data of the mains supply in the EtherCAT I/O system. The integrated monitoring of the energy efficiency of a plant is thus simple to implement.
  • The EL3773 and EL3783 power monitoring terminals are designed for the detailed acquisition of the condition of a 3-phase AC or DC grid.

The EtherCAT plug-in modules and the plug level for sensors and actuators can be placed flexibly on the signal distribution board. The development of a signal distribution board is carried out by the user or as a customer-specific solution by Beckhoff.
The EtherCAT plug-in modules and the plug level for sensors and actuators can be placed flexibly on the signal distribution board. The development of a signal distribution board is carried out by the user or as a customer-specific solution by Beckhoff.

EtherCAT plug-in modules: the perfect I/O solution for series production

The EtherCAT I/O plug-in modules are based electronically on the well-known EtherCAT Terminals, and they provide the same broad variety of signals, including functional safety (TwinSAFE). Their electromechanical design enables them to be plugged directly into an application-specific signal distribution board. This routing board distributes the signals and power supply to machine modules via pre-assembled cables with application-specific plug connectors. One of the main advantages of using the signal distribution board is that all steps take place with a high degree of automation, from the manufacture of the circuit board and its population through to the inspection. All connection boards can be placed on the circuit board according to the customer’s specification. The connection level, which is matched to the application, considerably optimizes the wiring work, for example with pre-assembled cables and coded plug connectors. The manufacturing process is accelerated as far as possible and the risk of wiring errors is reduced. This saves working time and thus costs. It allows production at different worldwide locations with a minimum of risk, since errors are avoided by concept through automation and coding. The plug-in modules are particularly suitable for injection molding machines because the I/O level in the core is always identically structured; an optional extension by IP 20 terminals is also easily feasible. The integration of safety technology and additional relays minimizes the mounting space requirement, which is particularly interesting for small and medium-size machines.

The robust design of the EtherCAT Box modules enables their use directly at the machine. Control cabinets and terminal boxes are now no longer required.
The robust design of the EtherCAT Box modules enables their use directly at the machine. Control cabinets and terminal boxes are now no longer required.

Universal EtherCAT for the IP 67 world

With the EtherCAT Box, EtherCAT technology is used without a control cabinet. The modules from the IP67 series have an integrated direct EtherCAT interface, so that the high performance is retained right down to each module. In the IP 67 world, this enables fast process data communication with XFC, high-precision measurement technology and integrated drive technology functions directly in the field. The robust design of the EtherCAT Box modules enables them to be used directly at the machine. Control cabinets and terminal boxes are now no longer required. In addition to the sturdy M12 screw connectors, D-Sub connectors, which are perfectly suited for handling applications, are also available for cost-sensitive applications.

  • With the EP3744 EtherCAT Box, pneumatic pressure monitoring for the gripper elements can be implemented in handling applications; at the same time, six digital inputs can be read in.
  • In the EP1816, the acquisition of 16 digital inputs is combined with the measurement of acceleration forces in three axes.
  • The EP3752 enables the measurement of acceleration forces without additional inputs. The measured values of the accelerometers can be used for the acquisition of the mass forces, e.g., on machine bodies or for innovative control concepts with jerk compensation on handling devices.
  • The EP3314 EtherCAT Box is suitable for the acquisition of process temperatures directly at the point where they arise. It increases measuring accuracy and saves having to use compensating cables for the thermocouples.
  • The FM3312 or FM3332 Fieldbus Modules in a sturdy metal housing are particularly suitable for temperature measurement on injection molds or nozzles in extrusion lines. Up to 32 temperature channels can be contained in one industrial connector. Operational reliability is additionally ensured by reverse polarity protection against phase voltage.
  • With the EP3356, the high-precision evaluation of load cells is possible, which is required in extruder applications for dosing and melt throughput measurement.

Electrical servo technology replaces hydraulic systems and increases the energy efficiency of plastic machines.
Electrical servo technology replaces hydraulic systems and increases the energy efficiency of plastic machines.

Electrical servo technology replaces hydraulic systems

The TwinCAT technology modules for plastic machines support hydraulic drive technology and servo-electric drives, therefore offering a wide selection of drive technology components. The integrated, fast control technology of the AX5000 EtherCAT Servo Drive series enables the realization of fast and highly dynamic motion processes. The flexible drive design, with 1- and 2-channel units as well as the variable distribution of motor output allocation, allows cost-optimized solutions, in particular for handling systems. The comprehensive range of Beckhoff servomotors is optimized for the AX5000 Servo Drives. The One Cable Technology, which combines the power and feedback cables into one standard motor cable, reduces cable runs, mounting space and commissioning costs. With integrated TwinSAFE technology, the Beckhoff Servo Drives meet the stringent safety requirements for plastic machines and simplify the configuration of production cells. PC-based control technology in combination with EtherCAT Servo Drives is ideally suited for replacing hydraulic axes with electrical drive solutions, which helps reduce the energy consumption of machines. When it comes to energy-efficient machines, a distinction is made between all-electric machines, where each axis is equipped with an electric motor and a spindle, and so-called servo hydraulics, where the hydraulic pump is operated with a servomotor. For both drive concepts solutions exist that include the AX5000 and TwinCAT technology software modules. In this way it is possible to effectively trigger crucial mold protection procedures that quickly stop the machine movement if a plastic part is detected in the mold. For the design of new machines, Beckhoff can offer support for the configuration of motors and gear units.

The servo terminals for the Beckhoff EtherCAT Terminal system integrate a complete servo drive in the standard terminal housing.
The servo terminals for the Beckhoff EtherCAT Terminal system integrate a complete servo drive in the standard terminal housing.

Compact Drive Technology: connection of motors directly in the I/O system

In combination with the wide range of motors and gear units, the Beckhoff I/O systems make inexpensive drive solutions possible: the modularly expandable motion terminals support servo, stepper and DC motors of different performance classes. EtherCAT Box modules with IP 67 protection for stepper and DC motors are available for use without control cabinets. All drive solutions are integrated in the Beckhoff TwinCAT automation software, making parameterization convenient. Solutions for lesser motion requirements. No high-quality servo axes are required for auxiliary drives, such as simple adjustable axes, movable stops, small conveying movements or simple positioning drives; in fact, stepper or DC motors are sufficient.

The AMP8000 servomotor with directly integrated servo drive paves the way for the minimization of the control cabinet. The performance values of the motor remain unchanged with a virtually identical size. Reduction to a single coupling module, which supplies several servomotors via a single cable, saves material, space, costs and mounting effort.
The AMP8000 servomotor with directly integrated servo drive paves the way for the minimization of the control cabinet. The performance values of the motor remain unchanged with a virtually identical size. Reduction to a single coupling module, which supplies several servomotors via a single cable, saves material, space, costs and mounting effort.

Modular design concept for maximum flexibility and space savings

The AMP8000 distributed Servo Drive system opens up new options for modular machine concepts. The AMP8000 integrates the servo drive directly into the servomotor in a very compact design. By relocating the power electronics into the machine, the space requirement in the control cabinet is reduced to a single coupling module, which supplies several distributed servo drives with only one cable via a distribution module. A further expansion stage completely eliminates the control cabinet space required for the drive technology. Whereas the connection of the drives to the control cabinet is reduced to only one cable with the coupling modules, it is completely eliminated when using the AMP8620 power supply module.

The AMP8000 is suitable for a wide range of applications in plastics processing. Servomotor-driven turning tools in multi-component injection molding technology can be integrated without additional control cabinet space. This also facilitates the retrofitting of existing plants. Handling devices for injection molding machines or blow molding machines can be attached with the AMP8000 without an additional control cabinet. This also applies to complete production cells with a typically limited footprint. A particularly interesting application for the machine design is also the blowing stations for stretch blow molding machines.

The XTS provides for flexibility in product handling in production cells by replacing complex and expensive mechanical systems with software. In TwinCAT, software function blocks are available for typical XTS applications and only require parameterization.
The XTS provides for flexibility in product handling in production cells by replacing complex and expensive mechanical systems with software. In TwinCAT, software function blocks are available for typical XTS applications and only require parameterization.

The eXtended Transport System replaces classic mechanical systems by innovative mechatronics

XTS is a mechatronic system that includes all the functions necessary for operation: a modular, fully integrated linear motor with power electronics and displacement measurement in one device, the movers and a mechanical guide rail. A wide variety of applications can be realized with these precisely matched components. The desired geometries, lengths and radii are formed by the number and choice of the components. XTS enables individual product transport with a continuous flow of material. With flexible path guidance, all advantages of a direct drive are readily available, such as high dynamics and positioning accuracy, low vibration inclination, freedom from wear and low energy consumption. Since the return journey and the curves are used for active material transport, there are no empty journeys and the process is accelerated. Simple engineering is ensured by the TwinCAT automation software, which already integrates standard functionalities such as automatic accumulation, collision and jerk avoidance.

The XPlanar is suitable for various transport tasks in a wide range of applications.
The XPlanar is suitable for various transport tasks in a wide range of applications.

Movement with six degrees of freedom ensures maximum flexibility in positioning

With the XPlanar system, Beckhoff opens up new paths in plant design: the planar movers hover jerk-free and contact-free over planar motor tiles in any desired arrangement. They can be moved two-dimensionally at speeds of up to 4 m/s, with 2g acceleration and 50 µm positioning accuracy, silently and without abrasion.

The planar motor system, which is scalable to suit needs, can significantly simplify the design of machines and plants and enables new freedoms in machine design. Due to the enormously flexible mover positioning and the very high movement dynamics, it is possible, for example, to divide product flows very easily and individually. Where robots or other inflexible mechanical devices have been used up to now, the XPlanar offers an efficient and flexible solution. The non-contact movement of the movers also eliminates wear, emissions and the carry-over of impurities. The XPlanar is therefore also ideally suited for applications with high hygiene standards, such as those that must be adhered to when transporting sensitive workpieces.

TwinCAT integrates all engineering and runtime processes on a central software platform.
TwinCAT integrates all engineering and runtime processes on a central software platform.

TwinCAT: the integrated engineering and control platform

TwinCAT integrates all engineering and runtime processes on a central software platform. This applies to programming, configuration, real-time environment and all runtime modules. By programming in the common IEC PLC dialects and integrating C/C++ algorithms, machine manufacturers can freely choose the most suitable programming method depending on the qualifications of the programmers, the service strategy and the need to protect expertise. With the integration of MATLAB®/Simulink®, controller concepts are developed based on models, thus contributing to virtual machine design. By using Microsoft Visual Studio® as integrated programmer workbench, different version control systems are supported and teamwork is simplified. For series production, TwinCAT offers open interfaces for the integration of commercial IT systems for machine program generation.

  • Extensive TwinCAT libraries for motion control save development time thanks to tested and optimized algorithms. The TwinCAT PTP and TwinCAT NC I supplements are ideally suited for handling applications with Cartesian robots. Ready-to-run solutions are available with TwinCAT Kinematic Transformation for other robot kinematics, such as SCARA, Delta and articulated arm.
  • Commissioning and service processes are accelerated and improved with TwinCAT Scope, a software oscilloscope fully integrated into the TwinCAT system architecture, and thus contribute to increasing machine quality.
  • TwinSAFE software-based safety technology simplifies the wiring of complex systems; variants can be mapped in software. This allows, for example, the modular development and commissioning of production cells. Documentation is also simplified and adaptations to additional customer requirements can be implemented quickly.
  • The integrated, browser-based TwinCAT HMI visualization solution enables convenient development and maintenance of visualization objects. The information is presented either on the machines and systems or via the internet using a web browser.
  • TwinCAT IoT provides the prerequisite for data aggregation in the cloud or locally in the production plant. TwinCAT also includes standardized communication protocols for cloud applications.
  • The collected data can be specifically evaluated using TwinCAT Analytics.
  • The TwinCAT interfaces to machine learning algorithms allow the use of AI methods in the traditional control environment.

The TwinCAT Plastic Application Components bundle Beckhoff‘s many years of plastics expertise in a software library that covers the basic production processes in the plastics industry.
The TwinCAT Plastic Application Components bundle Beckhoff‘s many years of plastics expertise in a software library that covers the basic production processes in the plastics industry.

TwinCAT Plastic Application Components: ideally suited for all plastics machines

The TwinCAT Plastic Application Components bundle Beckhoff‘s many years of plastics expertise in a software library that covers the basic production processes in the plastics industry. The proven TwinCAT Motion Control Supplements are integrated into technology modules for plastics machines. Customers can control and parameterize their machine components, such as the clamping unit, by function block call. With the innovative programming concept of object orientation, development time as well as maintenance and support costs for the control software are reduced. The data flow between PLC and HMI is combined in objects and represents the machine components with their respective properties. The principle of inheritance of object properties facilitates reusability of software modules. In addition, it gives machine builders the opportunity to incorporate their own process expertise and to program their machines individually or rather according to customer-specific requirements.

The TwinCAT Hydraulic software library provides all the software functions required for valve- and pump-controlled axes or servo pumps.
The TwinCAT Hydraulic software library provides all the software functions required for valve- and pump-controlled axes or servo pumps.

TwinCAT Hydraulic Positioning provides all the software functions required for valve- and pump-controlled axes

The TwinCAT Hydraulic software library (TF5810) provides all the software functions required for valve- and pump-controlled axes or servo pumps. As a rule, the solution is vendor-independent, so machine manufacturers are free to choose their preferred hydraulics equipment providers. The integration of motion control technology into the PLC makes separate hardware controllers unnecessary and eliminates additional communication effort. At the same time, the software-based architecture offers maximum flexibility for peak motion control performance. The Hydraulics library uses standardized PLCopen interfaces, which reduces engineering effort. Any hydraulic axes can be optimally operated through adapted set value generators, automatic characteristic curve identification, segmented movements and freely programmable switching between force, pressure and position control. The Hydraulic library concept enables advanced motion control for any number of axes with matching CPU performance. Hydraulic axes can be operated in interpolating mode when TwinCAT NC I or TwinCAT CNC is used. Hydraulic drive systems need different interfaces for sensors and hydraulic components. Therefore, the TwinCAT Hydraulic library supports all common interfaces in conjunction with Beckhoff I/O systems.

Example of the calculation of the trajectory for hydraulic drives: The user enters the speed as a function of the position (blue curve). The set value generator processes the speed profile entered, taking into account the dynamic parameters for a trajectory (violet curve). Depending on the drive technology used, TwinCAT Plastic Application Components offer users various set value generators for calculating optimum motion profiles.
Example of the calculation of the trajectory for hydraulic drives: The user enters the speed as a function of the position (blue curve). The set value generator processes the speed profile entered, taking into account the dynamic parameters for a trajectory (violet curve). Depending on the drive technology used, TwinCAT Plastic Application Components offer users various set value generators for calculating optimum motion profiles.

TwinCAT Motion Control: perfectly suited for hydraulic and electric drive technology

Hydraulic, electric or hybrid drive technology is used in injection molding and blow molding machines. With the TwinCAT technology modules for motion control, the machine manufacturer gains access to the long-standing Beckhoff know-how in all areas of motion control and can develop the different drive types in an engineering environment.

Electric drive concepts for plastics machines can be realized with TwinCAT NC. In combination with the TwinCAT Application Plastic Components, the NC is ideally suited for alternating control concepts, such as position and pressure control. Setpoint generators with jerk limitation reduce mechanical excitation and increase the service life and accuracy of the machine.

Plastics machines often still use hydraulic drive concepts. The TwinCAT Hydraulic Positioning software library provides all the necessary functions for this. Various hydraulic concepts are supported, such as valve or pump-controlled axes or servo pumps. Any hydraulic axes can be optimally operated through adapted setpoint generators, automatic characteristic curve identification, segmented movements and freely programmable switching between force, pressure and position control.

A combination of electric and hydraulic drive technology as used in hybrid machines is developed in an identical Motion Control environment with TwinCAT. As an industry-specific extension of the Beckhoff TwinCAT software platform, the Plastic Application Components support the widely used Euromap interfaces between injection molding machine and robot, either as Euromap 67 or in the future as Euromap 79 (OPC 40079).

The seamless integration of robot kinematics in the control system not only avoids the need for an additional robot CPU, but it also ensures optimum interaction and synchronization with the PLC and the existing motion control functions.
The seamless integration of robot kinematics in the control system not only avoids the need for an additional robot CPU, but it also ensures optimum interaction and synchronization with the PLC and the existing motion control functions.

Flexible and fully integrated robotic solution saves engineering effort

The TwinCAT Kinematic Transformation software integrates the robot controller into the automation software, so that PLC, motion control and robotics can run on one Industrial PC. In TwinCAT, a uniform engineering tool for configuration and programming is available to the user. This saves time and eliminates interface problems while at the same time reducing development costs. In addition to the Cartesian portal, serial 2D kinematics, 2D parallel kinematics and 3D delta kinematics, six-axis kinematics are also easy to implement. The respective kinematics can be selected and parameterized conveniently in the TwinCAT System Manager. The kinematic channel is used to parameterize the type (e.g., delta or SCARA) and the bar lengths and offsets. Mass and mass inertia values can be specified for dynamic pre-control. In addition, the software library also includes tracking functionalities. This means that the robot is synchronized with a moving object, so that it can pick up workpieces from conveyor belts or inclined turntables, for example.

The seamless integration of robot kinematics in the control system not only avoids the need for an additional robot CPU, it also ensures optimum interaction and synchronization with the PLC and the existing motion control functions: direct interfaces replace the complex communication between different controllers and systems. This results in high performance and improved accuracy.

TwinCAT Kinematic Transformation can be used with sox-axis robots in plastics technology. As an industry-specific extension of the Beckhoff software platform, the TwinCAT Plastic Application Components support the widely used Euromap interfaces between injection molding machine and robot, either as Euromap 67 or in the future as Euromap 79 (OPC 40079).

The open Beckhoff automation platform with integrated Euromap interface based on OPC UA ensures the secure and reliable M2M communication of heterogeneous plant parts or secure data communication to higher-level systems.
The open Beckhoff automation platform with integrated Euromap interface based on OPC UA ensures the secure and reliable M2M communication of heterogeneous plant parts or secure data communication to higher-level systems.

OPC UA: the platform for all future standards in the plastics industry – essentially driven by Beckhoff

Beckhoff has been a staunch advocate of open standards for many years, from a time when proprietary solutions were still widely used. This also includes great commitment in the field of OPC standardization. Beckhoff customers therefore benefit from a particularly extensive interoperability between Beckhoff products and those of third parties.

Beckhoff is one of the few companies that has its products examined annually for real interoperability and stability in the latest versions and with the latest functions. Companion Specifications are currently being defined in the different domains of mechanical engineering. In plastics technology, this is being driven by the Euromap organization. Beckhoff is actively involved in the Companion Specifications for the plastics industry and can therefore promptly integrate new specifications into its products. Within TwinCAT, an OPC UA interface is optionally available (TF6100) that satisfies the corresponding Euromap Companion Specifications. The Euromap 82 (OPC 40082) has been implemented for machine-to-machine communication; the Euromap 77 (OPC 40077) is available for connection to master computers or to the cloud. In addition to the OPC UA-based Euromap interfaces, Beckhoff strongly recommends the use of EtherCAT as a deterministic fieldbus for time-critical processes such as robot synchronization in high-performance injection molding.